CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2003, Vol. 75, No. 11-12, pp. 2375-2388

http://dx.doi.org/10.1351/pac200375112375

Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: A perspective

W. Tong, Hong Fang, H. Hong, Q. Xie, R. Perkins, Jeanne Anson and D. M. Sheehan

FDA ’s National Center for Toxicological Research (NCTR), Jefferson, AR 72079, USA; Logicon ROW Sciences, Jefferson, AR 72079, USA

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Stenberg Mia, Linusson Anna, Tysklind Mats, Andersson Patrik L.: A multivariate chemical map of industrial chemicals – Assessment of various protocols for identification of chemicals of potential concern. Chemosphere 2009, 76, 878. <http://dx.doi.org/10.1016/j.chemosphere.2009.05.011>
  • Ghosh Payel, Bagchi M.C.: Comparative QSAR studies of nitrofuranyl amide derivatives using theoretical structural properties. Mol Simul 2009, 35, 1185. <http://dx.doi.org/10.1080/08927020903033141>
  • Cronin Mark T. D., Worth Andrew P.: (Q)SARs for Predicting Effects Relating to Reproductive Toxicity. QSAR Comb Sci 2008, 27, 91. <http://dx.doi.org/10.1002/qsar.200710118>
  • Ahlers Jan, Stock Frauke, Werschkun Barbara: Integrated testing and intelligent assessment—new challenges under REACH. Env Sci Poll Res Int 2008, 15, 565. <http://dx.doi.org/10.1007/s11356-008-0043-y>
  • Ji Li, Wang XiaoDong, Luo Si, Qin Liang, Yang XvShu, Liu ShuShen, Wang LianSheng: QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network. SCI CHINA SER B 2008, 51, 677. <http://dx.doi.org/10.1007/s11426-008-0070-z>
  • Chen JingWen, Li Xuehua, Yu Haiying, Wang YaNan, Qiao XianLiang: Progress and perspectives of quantitative structure-activity relationships used for ecological risk assessment of toxic organic compounds. SCI CHINA SER B 2008, 51, 593. <http://dx.doi.org/10.1007/s11426-008-0076-6>
  • Tong Weida, Xie Qian, Hong Huixiao, Shi Leming, Fang Hong, Perkins Roger: Assessment of Prediction Confidence and Domain Extrapolation of Two Structure-Activity Relationship Models for Predicting Estrogen Receptor Binding Activity. Environ Health Perspect 2004, 112, 1249. <http://dx.doi.org/10.1289/ehp.7125>