CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2002, Vol. 74, No. 9, pp. 1537-1543

http://dx.doi.org/10.1351/pac200274091537

Nanophase materials by a novel microwave-hydrothermal process

Sridhar Komarneni1 and Hiroaki Katsuki2

1 Materials Research Institute and Department of Crop and Soil Sciences, 205 Materials Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
2 Saga Ceramics Research Laboratory, Saga 844-0024, Japan

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Rosu Cornelia, Selcuk Sibel, Soto-Cantu Erick, Russo Paul S.: Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells. Colloid Polym Sci 2014. <http://dx.doi.org/10.1007/s00396-014-3170-7>
  • Wang Wanjun, Liang Shijing, Ding Kaining, Bi Jinhong, Yu Jimmy C., Wong Po Keung, Wu Ling: Microwave hydrothermal synthesis of MSnO3 (M2+ = Ca2+, Sr2+, Ba2+): effect of M2+ on crystal structure and photocatalytic properties. J Mater Sci 2014, 49, 1893. <http://dx.doi.org/10.1007/s10853-013-7880-x>
  • Komarneni Sridhar, Esquivel Sergio, Noh Young Dong, Sitthisang Sonthikan, Tantirungrotechai Jonggol, Li Huihui, Yin Shu, Sato Tsugio, Katsuki Hiroaki: Novel synthesis of nanophase anatase under conventional- and microwave-hydrothermal conditions: DeNOx properties. Ceramics International 2014, 40, 2097. <http://dx.doi.org/10.1016/j.ceramint.2013.07.123>
  • Marinho J.Z., Montes R.H.O., de Moura A.P., Longo E., Varela J.A., Munoz R.A.A., Lima R.C.: Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Materials Research Bulletin 2014, 49, 572. <http://dx.doi.org/10.1016/j.materresbull.2013.09.052>
  • Geng Jun, Song Guanghui: One-pot fast synthesis of spherical ZnS/Au nanocomposites and their optical properties. J Mater Sci 2013, 48, 636. <http://dx.doi.org/10.1007/s10853-012-6767-6>
  • Sadat-Shojai Mehdi, Khorasani Mohammad-Taghi, Dinpanah-Khoshdargi Ehsan, Jamshidi Ahmad: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia 2013, 9, 7591. <http://dx.doi.org/10.1016/j.actbio.2013.04.012>
  • Chen Ding, Zhang Yingzhe, Kang Zhitao: A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chemical Engineering Journal 2013, 215-216, 235. <http://dx.doi.org/10.1016/j.cej.2012.10.061>
  • Praveena K., Murthty S.R.: Magneto acoustical emission in nanocrystalline Mn–Zn ferrites. Materials Research Bulletin 2013, 48, 4826. <http://dx.doi.org/10.1016/j.materresbull.2013.08.042>
  • Li Cuiyan, Wei Yajun, Liivat Anti, Zhu Yihua, Zhu Jiefang: Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles. Materials Letters 2013, 107, 23. <http://dx.doi.org/10.1016/j.matlet.2013.05.117>
  • Zhu X.H., Hang Q.M.: Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. Micron 2013, 44, 21. <http://dx.doi.org/10.1016/j.micron.2012.06.005>
  • Ji Hongmei, Miao Xiaowei, Wang Lu, Qian Bin, Yang Gang: Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries. Powder Technology 2013, 241, 43. <http://dx.doi.org/10.1016/j.powtec.2013.02.042>
  • Chen Ding, Yi Xiang, Chen Zhenhua, Zhang Yingzhe, Chen Biyu, Kang Zhitao: Synthesis of CoFe2 O4 Nanoparticles by a Low Temperature Microwave-Assisted Ball-Milling Technique. Int. J. Appl. Ceram. Technol. 2013, n/a. <http://dx.doi.org/10.1111/ijac.12110>
  • Li Shun, Nechache Riad, Davalos Ivan Alejandro Velasco, Goupil Gregory, Nikolova Liliya, Nicklaus Mischa, Laverdiere Jonathan, Ruediger Andreas, Rosei Federico, Damjanovic D.: Ultrafast Microwave Hydrothermal Synthesis of BiFeO 3 Nanoplates. J. Am. Ceram. Soc. 2013, n/a. <http://dx.doi.org/10.1111/jace.12473>
  • Devaraju Murukanahally Kempaiah, Honma Itaru: Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries. Laser Phys Rev 2012, 2, 284. <http://dx.doi.org/10.1002/aenm.201100642>
  • Chen Ding, Zhang YingZhe: Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique. TECHNOLOGICAL SCIENCES 2012, 55, 1535. <http://dx.doi.org/10.1007/s11431-012-4772-2>
  • Gingasu Dana, Mindru Ioana, Patron Luminita, Marinescu Gabriela, Tuna Floriana, Preda Silviu, Calderon-Moreno Jose Maria, Andronescu Cristian: Synthesis of CuGa2O4 nanoparticles by precursor and self-propagating combustion methods. Ceramics International 2012, 38, 6739. <http://dx.doi.org/10.1016/j.ceramint.2012.05.067>
  • Sun Meng, Li Danzhen, Zhang Wenjuan, Chen Zhixin, Huang Hanjie, Li Wenjuan, He Yunhui, Fu Xianzhi: Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water. Journal of Solid State Chemistry 2012, 190, 135. <http://dx.doi.org/10.1016/j.jssc.2012.02.027>
  • Chen Ding, Zhang Yingzhe, Tu Chuanjun: Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling. Materials Letters 2012, 82, 10. <http://dx.doi.org/10.1016/j.matlet.2012.05.034>
  • Katsuki Hiroaki, Furuta Sachiko, Komarneni Sridhar: Semi-continuous and fast synthesis of nanophase cubic BaTiO3 using a single-mode home-built microwave reactor. Materials Letters 2012, 83, 8. <http://dx.doi.org/10.1016/j.matlet.2012.05.071>
  • Cavalcante L. S., Longo V. M., Sczancoski J. C., Almeida M. A. P., Batista A. A., Varela J. A., Orlandi M. O., Longo E., Li M. Siu: Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrysEngComm 2012, 14, 853. <http://dx.doi.org/10.1039/c1ce05977g>
  • Patzke Greta R., Zhou Ying, Kontic Roman, Conrad Franziska: Oxidische Nanomaterialien: Von der Synthese über den Mechanismus zur technologischen Innovation. Angew Chem 2011, 123, 852. <http://dx.doi.org/10.1002/ange.201000235>
  • Baghbanzadeh Mostafa, Carbone Luigi, Cozzoli P. Davide, Kappe C. Oliver: Mikrowellen-unterstützte Synthese von kolloidalen anorganischen Nanokristallen. angew chemie 2011, 123, 11510. <http://dx.doi.org/10.1002/ange.201101274>
  • Patzke Greta R., Zhou Ying, Kontic Roman, Conrad Franziska: Oxide Nanomaterials: Synthetic Developments, Mechanistic Studies, and Technological Innovations. Angew Chem Int Ed 2011, 50, 826. <http://dx.doi.org/10.1002/anie.201000235>
  • Baghbanzadeh Mostafa, Carbone Luigi, Cozzoli P. Davide, Kappe C. Oliver: Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angew Chem Int E 2011, 50, 11312. <http://dx.doi.org/10.1002/anie.201101274>
  • Ji Hongmei, Yang Gang, Ni Huan, Roy Soumyajit, Pinto João, Jiang Xuefan: General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route. Electrochimica Acta 2011, 56, 3093. <http://dx.doi.org/10.1016/j.electacta.2011.01.079>
  • Conrad Franziska, Zhou Ying, Yulikov Maxim, Hametner Kathrin, Weyeneth Stephen, Jeschke Gunnar, Günther Detlef, Grunwaldt Jan-Dierk, Patzke Greta R.: Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates. Euro J Inorg Chem 2010, 2010, 2036. <http://dx.doi.org/10.1002/ejic.200901169>
  • Conrad Franziska, Patzke Greta R.: Microwave-Hydrothermal Approach to Nanostructured CuGa2O4. Z anorg allg Chem 2010, 636, 2070. <http://dx.doi.org/10.1002/zaac.201009043>
  • Phuruangrat Anukorn, Ham Dong Jin, Hong Suk Joon, Thongtem Somchai, Lee Jae Sung: Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem 2010, 20, 1683. <http://dx.doi.org/10.1039/b918783a>
  • Ramesh T., Murthy S. R., Shinde R. S.: Low Temperature Sintering of YIG Using Microwave Sintering Method. Integr Ferroelectr 2010, 118, 67. <http://dx.doi.org/10.1080/10584587.2010.503786>
  • Eliziário S. A., Cavalcante L. S., Sczancoski J. C., Pizani P. S., Varela J. A., Espinosa J. W. M., Longo E.: Morphology and Photoluminescence of HfO2 Obtained by Microwave-Hydrothermal. Nanoscale Res Lett 2009, 4, 1371. <http://dx.doi.org/10.1007/s11671-009-9407-6>
  • Chen Xun, Wang Wanjun, Chen Xueyuan, Bi Jinhong, Wu Ling, Li Zhaohui, Fu Xianzhi: Microwave hydrothermal synthesis and upconversion properties of NaYF4:Yb3+, Tm3+ with microtube morphology. Materials Letter 2009, 63, 1023. <http://dx.doi.org/10.1016/j.matlet.2009.01.075>
  • Jamuna-Thevi K., Zakaria F.A., Othman R., Muhamad S.: Development of macroporous calcium phosphate scaffold processed via microwave rapid drying. Material Science and Engineering C 2009, 29, 1732. <http://dx.doi.org/10.1016/j.msec.2009.01.022>
  • Xavier C.S., Sczancoski J.C., Cavalcante L.S., Paiva-Santos C.O., Varela J.A., Longo E., Li M. Siu: A new processing method of CaZn2(OH)6·2H2O powders: Photoluminescence and growth mechanism. Solid State Sci 2009, 11, 2173. <http://dx.doi.org/10.1016/j.solidstatesciences.2009.09.002>
  • SADHANA K., SHINDE R. S., MURTHY S. R.: SYNTHESIS OF NANOCRYSTALLINE YIG USING MICROWAVE-HYDROTHERMAL METHOD. Int. J. Mod. Phys. B 2009, 23, 3637. <http://dx.doi.org/10.1142/S0217979209063109>
  • Grabowska Hanna, Zawadzki Mirosław, Syper Ludwik: Catalytic Method for N-Methyl-4-pyridone Synthesis in the Presence of ZnAl2O4 . Catal Lett 2008, 121, 103. <http://dx.doi.org/10.1007/s10562-007-9305-4>
  • Parhi Purnendu, Kramer Jon, Manivannan V.: Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe). J Materials Sci 2008, 43, 5540. <http://dx.doi.org/10.1007/s10853-008-2833-5>
  • Teoreanu Ion, Preda Maria, Melinescu Alina: Synthesis and characterization of hydroxyapatite by microwave heating using CaSO4·2H2O and Ca(OH)2 as calcium source . Journal of Materials Science - Materials in Medicine 2008, 19, 517. <http://dx.doi.org/10.1007/s10856-006-0038-5>
  • Zawadzki Mirosław, Okal Janina: Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3. Mat Res Bul 2008, 43, 3111. <http://dx.doi.org/10.1016/j.materresbull.2007.11.006>
  • GIRIJA E. K., PARTHIBAN S. P., SUGANTHI R. V., ELAYARAJA K., JOSHY M. I. A., VANI R., KULARIA P., ASOKAN K., KANJILAL D., YOKOGAWA Y.: High energy irradiation——a tool for enhancing the bioactivity of Hydroxyapatite. J Ceram Soc Japan 2008, 116, 320. <http://dx.doi.org/10.2109/jcersj2.116.320>
  • Heuser J. A., Spendel W. U., Pisarenko A. N., Yu C., Pechan M. J., Pacey G. E.: Formation of surface magnetite nanoparticles from iron-exchanged zeolite using microwave radiation. J Materials Sci 2007, 42, 9057. <http://dx.doi.org/10.1007/s10853-007-1833-1>
  • Joy P.A., Sreeja V.: Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mat Res Bul 2007, 42, 1570. <http://dx.doi.org/10.1016/j.materresbull.2006.11.014>
  • Liu Juncheng, Qin Gaowu, Raveendran Poovathinthodiyil, Ikushima Yukata: Facile “Green” Synthesis, Characterization, and Catalytic Function of β-D-Glucose-Stabilized Au Nanocrystals. Chem Eur J 2006, 12, 2131. <http://dx.doi.org/10.1002/chem.200500925>
  • Raju V. Seetha Rama, Murthy S. R., Gao F., Lu Q., Komarneni S.: Microwave hydrothermal synthesis of nanosize PbO added Mg-Cu-Zn ferrites. J Materials Sci 2006, 41, 1475. <http://dx.doi.org/10.1007/s10853-006-7489-4>
  • Zawadzki Mirosław: Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4). Solid State Sci 2006, 8, 14. <http://dx.doi.org/10.1016/j.solidstatesciences.2005.08.006>
  • Komarneni Sridhar, Katsuki Hiroaki, Li Dongsheng, Bhalla Amar S: Microwave–polyol process for metal nanophases. J Phys Condens Matter 2004, 16, S1305. <http://dx.doi.org/10.1088/0953-8984/16/14/043>
  • Chen Weixiang, Zhao Jie, Lee Jim Yang, Liu Zhaolin: Microwave Polyol Synthesis and Characterizations of Carbon-supported Pt and Ru Nanoparticles. Chem Lett 2004, 33, 474. <http://dx.doi.org/10.1246/cl.2004.474>