Pure Appl. Chem., 2002, Vol. 74, No. 8, pp. 1461-1467
http://dx.doi.org/10.1351/pac200274081461
Beta-carotene and lung cancer
Abstract:
Does beta-carotene increase, rather than
decrease, human lung cancer rates? A large body of observational epidemiologic
study has demonstrated that individuals who eat more fruits and vegetables
rich in carotenoids and/or who have higher levels of serum beta-carotene
have a lower risk of cancer, particularly lung cancer. This inverse
relationship has been particularly strong in lung cancer patients with
a history of heavy smoking. However, there is contradictory evidence
from recent human intervention studies using beta-carotene supplements
(2030 mg per day). An increase in risk of lung cancer among smokers
who took beta-carotene supplements was reported in the Alpha Tocopherol,
Beta-carotene Cancer Prevention (ATBC) Trial and among smokers and asbestos-exposed
workers in the Beta-Carotene and Retinol Efficiency Trial (CARET), but
not among male physicians in the United States in the Physicians Health
Study (only 11 % of whom were current smokers). Whether there is a true
hazard associated with beta-carotene has been evaluated in control studies
using the ferret. This animal mimics the human tissue metabolism of
beta-carotene, and has been used for studies of tobacco smoking and
inhalation toxicology. In the first study, ferrets were given a high-dose
beta-carotene supplement equivalent to 30 mg per day in humans, and
exposed cigarette smoke or both for six months. A strong proliferative
response in lung tissue and squamous metaplasia were observed in all
beta-carotene-supplemented animals, and this response was enhanced by
exposure to tobacco smoke. When compared to the control group, beta-carotene-supplemented
animals (with or without smoke exposure) had statistically significantly
lower concentrations of retinoic acid in lung tissue, and they exhibited
reductions in RAR-beta gene expression (a tumor suppressor gene). Further,
ferrets given a high-dose beta-carotene supplement and exposed to tobacco
smoke had fourfold elevated expressions of c-jun and c-fos genes. In
a second study, ferrets were given either physiological- or pharmacologic-dose
beta-carotene supplementations, which were equivalent to 6 mg vs. 30
mg per day in humans, respectively. The animals were exposed to cigarette
smoke for six months. The retinoic acid concentration and RAR beta-gene
expression were reduced in the lung tissues, whereas the expression
of AP1, cyclin D1, and proliferative cell nuclear antigen were greater
in the high-dose, beta-carotene-supplemented animals with or without
smoke, as well as the smoke-exposed, low-dose, beta-carotene-supplemented
animalsbut not in the low-dose, beta-carotene-supplemented animals alone,
as compared with the control group. Squamous metaplasia was only observed
in the lung tissues of high-dose, beta-carotene exposed groups with
or without smoke (but not the low-dose beta-carotene plus smoke group,
the low-dose beta-carotene-supplemented group, or the control group).
These data show that in contrast with the pharmacologic dose of beta-carotene,
a physiologic dose of beta-carotene in smoke-exposed ferrets has no
detrimental effectand, in fact, may afford weak protection against lung
damage induced by cigarette smoke.
Further studies from our laboratory have revealed an instability of
the beta-carotene molecule in the lungs of cigarette smoke-exposed ferrets.
Oxidized beta-carotene metabolites may play a role in lung carcinogenesis:
by inducing carcinogen-bioactivating enzymes, facilitating the binding
of metabolites of benz[a]pyrene to DNA, enhancing retinoic acid metabolism
by P450 enzyme induction with subsequent down-regulation of RAR-beta,
and acting as pro-oxidants, causing damage to DNA. Ferret studies under
highly controlled experimental conditions using high- and low-dose beta-carotene
in the presence of alpha tocopherol and ascorbic acid (thereby stabilizing
the beta-carotene molecule) showed protective effects against smoke-induced
lung squamous metaplasia in ferrets.