CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2001, Vol. 73, No. 12, pp. 1839-1848

http://dx.doi.org/10.1351/pac200173121839

Photocatalytic transformation of organic compounds in the presence of inorganic ions

Paola Calza and Ezio Pelizzetti

Dipartimento di Chimica Analitica, Università di Torino, via P. Giuria 5, 10125 Torino, Italy

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Ma Dong, Xin Yanjun, Gao Mengchun, Wu Juan: Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Applied Catalysis B: Environmental 2014, 147, 49. <http://dx.doi.org/10.1016/j.apcatb.2013.08.004>
  • Zhang Yunfan, Selvaraj Rengaraj, Sillanpää Mika, Kim Younghun, Tai Cheuk-Wai: The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chemical Engineering Journal 2014, 245, 117. <http://dx.doi.org/10.1016/j.cej.2014.02.028>
  • Srivastava Pankaj, Goyal Shikha, Patnala Prem Kishore: Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium]. Ultrasonics Sonochemistry 2014. <http://dx.doi.org/10.1016/j.ultsonch.2014.01.016>
  • Kanakaraju Devagi, Motti Cherie A., Glass Beverley D., Oelgemöller Michael: Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environ. Chem. 2014, 11, 51. <http://dx.doi.org/10.1071/EN13098>
  • Răileanu Mălina, Crişan Maria, Niţoi Ines, Ianculescu Adelina, Oancea Petruţa, Crişan Dorel, Todan Ligia: TiO2-based Nanomaterials with Photocatalytic Properties for the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey. Water Air Soil Pollut 2013, 224. <http://dx.doi.org/10.1007/s11270-013-1548-7>
  • Dozzi Maria Vittoria, Selli Elena: Effects of phase composition and surface area on the photocatalytic paths on fluorinated titania. Catalysis Today 2013, 206, 26. <http://dx.doi.org/10.1016/j.cattod.2012.03.029>
  • Hou Liwei, Zhang Hui, Wang Liguo, Chen Lu: Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chemical Engineering Journal 2013, 229, 577. <http://dx.doi.org/10.1016/j.cej.2013.06.013>
  • Hauchecorne Birger, Lenaerts Silvia: Unravelling the mysteries of gas phase photocatalytic reaction pathways by studying the catalyst surface: A literature review of different Fourier transform infrared spectroscopic reaction cells used in the field. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 14, 72. <http://dx.doi.org/10.1016/j.jphotochemrev.2012.09.003>
  • Tu Wenting, Lin Yi-Pin, Bai Renbi: Removal of phenol in aqueous solutions by novel buoyant Composite photocatalysts and the kinetics. Separation and Purification Technology 2013, 115, 180. <http://dx.doi.org/10.1016/j.seppur.2013.05.009>
  • Boppana Venkata Bharat Ram, Jiao Feng, Newby Dave, Laverock Jude, Smith Kevin E., Jumas Jean Claude, Hutchings Greg, Lobo Raul F.: Analysis of visible-light-active Sn(ii)–TiO2 photocatalysts. Phys. Chem. Chem. Phys. 2013, 15, 6185. <http://dx.doi.org/10.1039/c3cp44635b>
  • Berger Thomas, Monllor-Satoca Damián, Jankulovska Milena, Lana-Villarreal Teresa, Gómez Roberto: The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13, 2824. <http://dx.doi.org/10.1002/cphc.201200073>
  • Pastrana-Martínez Luisa M., Faria Joaquim L., Doña-Rodríguez José M., Fernández-Rodríguez Cristina, Silva Adrián M.T.: Degradation of diphenhydramine pharmaceutical in aqueous solutions by using two highly active TiO2 photocatalysts: Operating parameters and photocatalytic mechanism. Catal B 2012, 113-114, 221. <http://dx.doi.org/10.1016/j.apcatb.2011.11.041>
  • Zhang Qianyi, Gao Tingting, Andino Jean M., Li Ying: Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Applied Catalysis B: Environmental 2012, 123-124, 257. <http://dx.doi.org/10.1016/j.apcatb.2012.04.035>
  • Anju S.G., Yesodharan Suguna, Yesodharan E.P.: Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chemical Engineering J 2012. <http://dx.doi.org/10.1016/j.cej.2012.02.032>
  • Wang Wanjun, Yu Ying, An Taicheng, Li Guiying, Yip Ho Yin, Yu Jimmy C., Wong Po Keung: Visible-Light-Driven Photocatalytic Inactivation of E. coli K-12 by Bismuth Vanadate Nanotubes: Bactericidal Performance and Mechanism. Env Sci & Tech 2012, 46, 4599. <http://dx.doi.org/10.1021/es2042977>
  • Ahmed Saber: Impact of Operating Conditions and Recent Developments in Heterogeneous Photocatalytic Water Purification Process. REV ENVIRON SCI TECHNOL 2012, 42, 601. <http://dx.doi.org/10.1080/10643389.2010.526492>
  • Yan Xiaoju, Bao Ruiling, Yu Shuili, Li Qiongfang, Jing Qingfeng: The roles of hydroxyl radicals, photo-generated holes and oxygen in the photocatalytic degradation of humic acid. Russ. J. Phys. Chem. 2012, 86, 1479. <http://dx.doi.org/10.1134/S0036024412070333>
  • Ahmed Saber, Rasul M. G., Martens Wayde N., Brown Richard, Hashib M. A.: Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water Air Soil Poll 2011, 215, 3. <http://dx.doi.org/10.1007/s11270-010-0456-3>
  • Wang Wanjun, Zhang Lizhi, An Taicheng, Li Guiying, Yip Ho-Yin, Wong Po-Keung: Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-codoped TiO2 microspheres: The role of different reactive species. Catal B 2011, 108-109, 108. <http://dx.doi.org/10.1016/j.apcatb.2011.08.015>
  • Dron Julien, Dodi Alain: Comparison of adsorption equilibrium models for the study of CL−, NO3− and SO42− removal from aqueous solutions by an anion exchange resin. Journal of Hazardous Materials 2011, 190, 300. <http://dx.doi.org/10.1016/j.jhazmat.2011.03.049>
  • Monllor-Satoca Damián, Lana-Villarreal Teresa, Gómez Roberto: Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes. Langmir 2011, 27, 15312. <http://dx.doi.org/10.1021/la203319b>
  • Tomašević Andjelka, Mijin Dušan, Kiss Ernő: Photochemical Behavior of the Insecticide Methomyl Under Different Conditions. Sep Sci Technol 2010, 45, 1617. <http://dx.doi.org/10.1080/01496395.2010.487720>
  • Konsowa A.H.: Bromate removal from water using granular activated carbon in a batch recycle. Desalination and Water Treatment 2009, 12, 375. <http://dx.doi.org/10.5004/dwt.2009.1072>
  • Lair Antoine, Ferronato Corinne, Chovelon Jean-Marc, Herrmann Jean-Marie: Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. J Photochem Photobiol A Chem 2008, 193, 193. <http://dx.doi.org/10.1016/j.jphotochem.2007.06.025>
  • Eberl Joachim, Kisch Horst: Visible light photo-oxidations in the presence of α-Bi2O3. Photochem Photobiol Sci 2008, 7, 1400. <http://dx.doi.org/10.1039/b811197a>
  • Calza Paola, Pelizzetti Ezio, Mogyorósi Károly, Kun Robert, Dékány Imre: Size dependent photocatalytic activity of hydrothermally crystallized titania nanoparticles on poorly adsorbing phenol in absence and presence of fluoride ion. APPLIED CATALYSIS B 2007, 72, 314. <http://dx.doi.org/10.1016/j.apcatb.2006.10.019>
  • Hosseini S.N., Borghei S.M., Vossoughi M., Taghavinia N.: Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. APPLIED CATALYSIS B 2007, 74, 53. <http://dx.doi.org/10.1016/j.apcatb.2006.12.015>
  • Zhu Xingdong, Nanny Mark A., Butler Elizabeth C.: Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite. J Photochem Photobiol A Chem 2007, 185, 289. <http://dx.doi.org/10.1016/j.jphotochem.2006.06.023>
  • Yang Shiying, Lou Liping, Wang Kan, Chen Yingxu: Shift of initial mechanism in TiO2-assisted photocatalytic process. CATAL A GENERAL 2006, 301, 152. <http://dx.doi.org/10.1016/j.apcata.2005.11.004>
  • Linnik Oksana, Kisch Horst: On the mechanism of nitrogen photofixation at nanostructured iron titanate films. Photochem Photobiol Sci 2006, 5, 938. <http://dx.doi.org/10.1039/b608396j>
  • Aramendía M.A., Marinas A., Marinas J.M., Moreno J.M., Urbano F.J.: Photocatalytic degradation of herbicide fluroxypyr in aqueous suspension of TiO2. Catal Today 2005, 101, 187. <http://dx.doi.org/10.1016/j.cattod.2005.03.063>
  • Gautam Satyen, Kamble Sanjay P., Sawant Sudhir B., Pangarkar Vishwas G.: Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation. Chem Eng J 2005, 110, 129. <http://dx.doi.org/10.1016/j.cej.2005.03.021>
  • Rodríguez S. Malato, Gálvez J. Blanco, Maldonado Rubio Manuel I., Ibáñez P. Fernández, Gernjak W., Alberola I. Oller: Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant. Chemosphere 2005, 58, 391. <http://dx.doi.org/10.1016/j.chemosphere.2004.09.043>
  • Chubar N.I., Samanidou V.F., Kouts V.S., Gallios G.G., Kanibolotsky V.A., Strelko V.V., Zhuravlev I.Z.: Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. Journal of Colloid and Interface Science 2005, 291, 67. <http://dx.doi.org/10.1016/j.jcis.2005.04.086>