Pure Appl. Chem., 2000, Vol. 72, No. 7, pp. 1337-1343
http://dx.doi.org/10.1351/pac200072071337
Biocatalysis. Biological systems for the production of chemicals
CrossRef Cited-by Linking
- Zhou Zhou, Inayat Alexandra, Schwieger Wilhelm, Hartmann Martin: Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials 2012, 154, 133. <http://dx.doi.org/10.1016/j.micromeso.2012.01.003>
- Soldevila-Barreda Joan J., Bruijnincx Pieter C. A., Habtemariam Abraha, Clarkson Guy J., Deeth Robert J., Sadler Peter J.: Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD+. Organometallics 2012, 31, 5958. <http://dx.doi.org/10.1021/om3006307>
- Zhou Zhou, Taylor Robin N. Klupp, Kullmann Simon, Bao Huixin, Hartmann Martin: Mesoporous Organosilicas With Large Cage-Like Pores for High Efficiency Immobilization of Enzymes. Adv Mater 2011, 23, 2627. <http://dx.doi.org/10.1002/adma.201004054>
- Koptyug Irina I., Lysova Anna A., Kovalenko Galina A., Perminova Larisa V., Koptyug Igor V.: Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis. Appl Magn Reson 2010, 37, 483. <http://dx.doi.org/10.1007/s00723-009-0074-7>
- Jung Dirk, Paradiso Michelangelo, Hartmann Martin: Formation of cross-linked glucose oxidase aggregates in mesocellular foams. J Materials Sci 2009, 44, 6747. <http://dx.doi.org/10.1007/s10853-009-3917-6>
- Valadez-Blanco Rogelio, Livingston Andrew Guy: Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis. Biochem Eng J 2009, 46, 44. <http://dx.doi.org/10.1016/j.bej.2009.05.009>
- Valadez-Blanco Rogelio, Livingston Andrew Guy: Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis. Part II. Aqueous–organic systems: Emulsion and membrane bioreactors. Biochem Eng J 2009, 46, 54. <http://dx.doi.org/10.1016/j.bej.2009.05.010>
- Anastas Paul T., Beach Evan S.: Green chemistry: the emergence of a transformative framework. Green Chem Lett & Revs 2007, 1, 9. <http://dx.doi.org/10.1080/17518250701882441>
- Dib Iskandar, Slavica Anita, Riethorst Waander, Nidetzky Bernd: Thermal inactivation ofD-amino acid oxidase fromTrigonopsis variabilis occurs via three parallel paths of irreversible denaturation. Biotechnol Bioeng 2006, 94, 645. <http://dx.doi.org/10.1002/bit.20854>
- Mertens Rita, Greiner Lasse, van den Ban Eyke C.D, Haaker Huub B.C.M, Liese Andreas: Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. Mol Catal B Enzym 2003, 24-25, 39. <http://dx.doi.org/10.1016/S1381-1177(03)00071-7>
- Lo H. Christine, Fish Richard H.: Biomimetic NAD+ Models for Tandem Cofactor Regeneration, Horse Liver Alcohol Dehydrogenase Recognition of 1,4-NADH Derivatives, and Chiral Synthesis. Angew Chem 2002, 114, 496. <http://dx.doi.org/10.1002/1521-3757(20020201)114:3<496::AID-ANGE496>3.0.CO;2-Z>
- Lo H. Christine, Fish Richard H.: Biomimetic NAD+ Models for Tandem Cofactor Regeneration, Horse Liver Alcohol Dehydrogenase Recognition of 1,4-NADH Derivatives, and Chiral Synthesis. Angew Chem Int Ed 2002, 41, 478. <http://dx.doi.org/10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K>