Pure Appl. Chem., 2000, Vol. 72, No. 1-2, pp. 309-315
http://dx.doi.org/10.1351/pac200072010309
Multiply coated microspheres. A platform for realizing fields-induced structural transition and photonic bandgap
CrossRef Cited-by Linking
- Shim Goo Hwan, Foulger Stephen H.: Coupling of crystalline colloidal arrays with intrinsically conductive polymers: Reflection-type electrochromic devices. Photonics and Nanostructures - Fundamentals and Applications 2012, 10, 440. <http://dx.doi.org/10.1016/j.photonics.2011.12.001>
- Deng Hai-Dong, Li Guang-Can, Liu Hai-Ying, Dai Qiao-Feng, Wu Li-Jun, Lan Sheng, Gopal Achanta Venu, Trofimov Vyacheslav A., Lysak Tatiana M.: Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Express 2012, 20, 9616. <http://dx.doi.org/10.1364/OE.20.009616>
- Aryal D P, Tsakmakidis K L, Hess O: Complete bandgap switching in photonic opals. New J Phys 2009, 11, 073011. <http://dx.doi.org/10.1088/1367-2630/11/7/073011>
- Li Bo, Zhou Ji, Zong Ruilong, Fu Ming, Li Longtu: Temperature tunable photonic bandgap in PLZT inverse opals. J Electroceram 2008, 21, 711. <http://dx.doi.org/10.1007/s10832-007-9262-8>
- Kuai Su-Lan, Bader Georges, Ashrit P. V.: Tunable electrochromic photonic crystals. Appl Phys Lett 2005, 86, 221110. <http://dx.doi.org/10.1063/1.1929079>
- Li Bo, Zhou Ji, Li Longtu, Wang Xing Jun, Liu Xiao Han, Zi Jian: Ferroelectric inverse opals with electrically tunable photonic band gap. Appl Phys Lett 2003, 83, 4704. <http://dx.doi.org/10.1063/1.1631737>