CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1999, Vol. 71, No. 10, pp. 1909-1918

http://dx.doi.org/10.1351/pac199971101909

Plasma spray processes: diagnostics and control?

M. Vardelle and P. Fauchais

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Choudhury T. A., Berndt C. C., Man Zhihong: An Extreme Learning Machine Algorithm to Predict the In-flight Particle Characteristics of an Atmospheric Plasma Spray Process. Plasma Chem Plasma Process 2013, 33, 993. <http://dx.doi.org/10.1007/s11090-013-9466-4>
  • Isakaev E. Kh., Mordynskii V. B., Tyuftyaev A. S., Senchenko V. N., Chinnov V. F., Shcherbakov V. V.: Investigation of heating and acceleration of particles in plasma spraying. Welding International 2013, 27, 304. <http://dx.doi.org/10.1080/09507116.2012.715910>
  • Choudhury T. A., Hosseinzadeh N., Berndt C. C.: Improving the Generalization Ability of an Artificial Neural Network in Predicting In-Flight Particle Characteristics of an Atmospheric Plasma Spray Process. J Therm Spray Tech 2012, 21, 935. <http://dx.doi.org/10.1007/s11666-012-9775-9>
  • Choudhury T.A., Hosseinzadeh N., Berndt C.C.: Artificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray process. Surface Coatings and Technology 2011, 205, 4886. <http://dx.doi.org/10.1016/j.surfcoat.2011.04.099>
  • Srinivasan Vasudevan, Sampath Sanjay: Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics. J Therm Spray Technol 2010, 19, 476. <http://dx.doi.org/10.1007/s11666-009-9439-6>
  • Zhang W., Sampath S.: A Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray Processes. J Therm Spray Technol 2009, 18, 23. <http://dx.doi.org/10.1007/s11666-008-9214-0>
  • Vardelle A., Fauchais P., Vardelle M., Mariaux G.: Direct Current Plasma Spraying: Diagnostics and Process Simulation. Adv Eng Mater 2006, 8, 599. <http://dx.doi.org/10.1002/adem.200600045>
  • Guessasma Sofiane, Bounazef Mokhtar, Nardin Philippe: Neural computation analysis of alumina–titania wear resistance coating. Int J Refract Met Hard Mat 2006, 24, 240. <http://dx.doi.org/10.1016/j.ijrmhm.2005.05.012>
  • Venkataraman R., Krishnamurthy R.: Evaluation of fracture toughness of as plasma sprayed alumina–13wt.% titania coatings by micro-indentation techniques. J Eur Ceram 2006, 26, 3075. <http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.054>
  • Guessasma S., Bounazef M.: Experimental Design to Study the Effect of APS Process Parameters on Friction Behaviour of Alumina-Titania Coatings. Adv Eng Mater 2004, 6, 907. <http://dx.doi.org/10.1002/adem.200400051>
  • Guessasma S., Coddet C.: Microstructure of APS alumina–titania coatings analysed using artificial neural network. Acta Mater 2004, 52, 5157. <http://dx.doi.org/10.1016/j.actamat.2004.07.022>
  • Guessasma Sofiane, Salhi Zahir, Montavon Ghislain, Gougeon Patrick, Coddet Christian: Artificial intelligence implementation in the APS process diagnostic. Mater Sci & Eng B 2004, 110, 285. <http://dx.doi.org/10.1016/j.mseb.2004.03.017>
  • Fauchais P: Understanding plasma spraying. J Phys D Appl Phys 2004, 37, R86. <http://dx.doi.org/10.1088/0022-3727/37/9/R02>
  • Guessasma Sofiane, Montavon Ghislain, Coddet Christian: Analysis of the influence of atmospheric plasma spray (APS) parameters on adhesion properties of alumina-titania coatings. Journal of Adhesion Science and Technology 2004, 18, 495. <http://dx.doi.org/10.1163/156856104323016388>
  • Fauchais P, Vardelle A: Pending problems in thermal plasmas and actual development. Plasma Phys Control Fusion 2000, 42, B365. <http://dx.doi.org/10.1088/0741-3335/42/12B/327>