CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1998, Vol. 70, No. 4, pp. 969-976

http://dx.doi.org/10.1351/pac199870040969

Metal ion-assisted stacking interactions and the facilitated hydrolysis of nucleoside 5 ¢ -triphosphates

H. Sigel

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Blindauer Claudia A., Sigel Astrid, Operschall Bert P., Holý Antonin, Sigel Helmut: Extent of Intramolecular π Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) [1, 2]. Z. anorg. allg. Chem. 2013, 639, 1661. <http://dx.doi.org/10.1002/zaac.201300095>
  • Sayer Alon Haim, Itzhakov Yehudit, Stern Noa, Nadel Yael, Fischer Bilha: Characterization of Complexes of Nucleoside-5′-Phosphorothioate Analogues with Zinc Ions. Inorg. Chem. 2013, 52, 10886. <http://dx.doi.org/10.1021/ic400878k>
  • Zhou Jin-Ying, Lu Gong-Xuan: L-Arginine and zinc ion effect on recognition and hydrolysis rate of adenosine 5′-triphosphate. Journal of Coordination Chemistry 2012, 65, 3580. <http://dx.doi.org/10.1080/00958972.2012.713943>
  • Deng Dehua, Xia Ning, Li Sujuan, Xu Chunying, Sun Ting, Pang Huan, Liu Lin: Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers. Sensors 2012, 12, 15078. <http://dx.doi.org/10.3390/s121115078>
  • Kapinos  Larisa E., Operschall Bert P., Larsen Erik, Sigel Helmut: Understanding the Acid-Base Properties of Adenosine: The Intrinsic Basicities of N1, N3 and N7. Chemistry A European Journal 2011, 17, 8156. <http://dx.doi.org/10.1002/chem.201003544>
  • SIGEL H.: ChemInform Abstract: Metal-Assisted Stacking Interactions and the Facilitated Hydrolysis of Nucleoside 5′-Triphosphates. ChemInform 2010, 30, no. <http://dx.doi.org/10.1002/chin.199901302>
  • Fernández-Botello Alfonso, Holý Antonín, Moreno Virtudes, Operschall Bert P., Sigel Helmut: Intramolecular π–π stacking interactions in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Inorg Chim Ada 2009, 362, 799. <http://dx.doi.org/10.1016/j.ica.2008.02.035>
  • Xu Wu, Louka Febee R., Doulain Pierre E., Landry Caroline A., Mautner Franz A., Massoud Salah S.: Hydrolytic cleavage of DNA promoted by cobalt(III)–tetraamine complexes: Synthesis and characterization of carbonatobis[2-(2-pyridylethyl)]-(2-pyridylmethyl)aminecobalt(III) perchlorate. J Polyhedron 2009, 28, 1221. <http://dx.doi.org/10.1016/j.poly.2009.02.003>
  • Sigel Helmut, Operschall Bert P., Griesser Rolf: Xanthosine 5′-monophosphate (XMP). Acid–base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009, 38, 2465. <http://dx.doi.org/10.1039/b902181g>
  • Ma Yanqing, Lu Gongxuan: Differential effects of Mg(ii) and Nα-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis. Dalton Trans 2008, 1081. <http://dx.doi.org/10.1039/b714667a>
  • Terrón Angel, Fiol Juan J., García-Raso Angel, Barceló-Oliver Miquel, Moreno Virtudes: Biological recognition patterns implicated by the formation and stability of ternary metal ion complexes of low-molecular-weight formed with amino acid/peptides and nucleobases/nucleosides. Coord Chem Rev - 2007, 251, 1973. <http://dx.doi.org/10.1016/j.ccr.2007.03.006>
  • Freisinger Eva, Sigel Roland K.O.: From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coord Chem Rev - 2007, 251, 1834. <http://dx.doi.org/10.1016/j.ccr.2007.03.008>
  • Sigel Helmut, Griesser Rolf: Nucleoside 5′-triphosphates: self-association, acid–base, and metal ion-binding properties in solution. Chem Soc Rev 2005, 34, 875. <http://dx.doi.org/10.1039/b505986k>
  • Zhao Yan, Truhlar Donald G.: How well can new-generation density functional methods describe stacking interactions in biological systems?. Phys Chem Chem Phys 2005, 7, 2701. <http://dx.doi.org/10.1039/b507036h>
  • Guo Yanhe, Ge Qingchun, Lin Hai, Lin Huakuan, Zhu Shourong, Zhou Changyue: Recognition promoted by Zn2+ between phenanthroline bridging polyaza ligands and nucleotides — Zn2+ acts as ‘messenger’ between the receptor and substrate. J Mol Recognit 2003, 16, 102. <http://dx.doi.org/10.1002/jmr.609>
  • Du Fei, Mao Xi-An, Li Dong-Feng, Liao Zhan-Ru: Binding site of Fe3+ at purine of ATP as studied by NMR. J Inorg Biochem 2001, 83, 101. <http://dx.doi.org/10.1016/S0162-0134(00)00185-9>
  • Bianchi Emanuela M., Sajadi S.Ali A., Song Bin, Sigel Helmut: Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline, and monoprotonated or deprotonated adenosine 5′-diphosphate (ADP3−). Evaluation of isomeric equilibria. Inorg Chim Ada 2000, 300-302, 487. <http://dx.doi.org/10.1016/S0020-1693(99)00555-1>
  • Peral Fernando, Gallego Ernesto: The self-organization of adenosine 5′-triphosphate and adenosine 5′-diphosphate in aqueous solution as determined from ultraviolet hypochromic effects. biophys chem 2000, 85, 79. <http://dx.doi.org/10.1016/S0301-4622(00)00150-2>
  • Sajadi S. Ali A., Song Bin, Sigel Helmut: Ternary complexes in solution. Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2′-bipyridyl or 1,10-phenanthroline and a pyrimidine-nucleoside 5′-diphosphate (CDP3−, UDP3−, dTDP3−). Inorg Chim Ada 1998, 283, 193. <http://dx.doi.org/10.1016/S0020-1693(98)00097-8>