CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1993, Vol. 65, No. 6, pp. 1161-1178

http://dx.doi.org/10.1351/pac199365061161

Intramolecular strategies and stereoelectronic effects. Glycosides hydrolysis revisited

P. Deslongchamps

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Tang Yu, Li Jiakun, Zhu Yugen, Li Yao, Yu Biao: Mechanistic Insights into the Gold(I)-Catalyzed Activation of Glycosyl ortho-Alkynylbenzoates for Glycosidation. J. Am. Chem. Soc. 2013, 135, 18396. <http://dx.doi.org/10.1021/ja4064316>
  • Wu Miao, Nerinckx Wim, Piens Kathleen, Ishida Takuya, Hansson Henrik, Sandgren Mats, Ståhlberg Jerry: Rational design, synthesis, evaluation and enzyme- substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J 2013, 280, 184. <http://dx.doi.org/10.1111/febs.12060>
  • Lazareva N. F., Lazarev I. M.: Electronic effects of 2-azasilatran-3-one groups. Russ J Gen Chem 2013, 83, 1649. <http://dx.doi.org/10.1134/S1070363213090041>
  • Juers Douglas H., Matthews Brian W., Huber Reuben E.: LacZ β-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Science 2012, 21, 1792. <http://dx.doi.org/10.1002/pro.2165>
  • Deshpande Prashant P., Singh Janak, Pullockaran Annie, Kissick Thomas, Ellsworth Bruce A., Gougoutas Jack Z., Dimarco John, Fakes Michael, Reyes Mayra, Lai Chiajen: A Practical Stereoselective Synthesis and Novel Cocrystallizations of an Amphiphatic SGLT-2 Inhibitor. Org Process Res Devel 2012, 16, 577. <http://dx.doi.org/10.1021/op200306q>
  • Manabe Shino, Ishii Kazuyuki, Satoh Hiroko, Ito Yukishige: Substituent effects in endocyclic cleavage–recyclization anomerization reaction of pyranosides. Tedrahedron 2011, 67, 9966. <http://dx.doi.org/10.1016/j.tet.2011.09.059>
  • Jitonnom Jitrayut, Lee Vannajan S., Nimmanpipug Piyarat, Rowlands Heather A., Mulholland Adrian J.: Quantum Mechanics/Molecular Mechanics Modeling of Substrate-Assisted Catalysis in Family 18 Chitinases: Conformational Changes and the Role of Asp142 in Catalysis in ChiB. Biochemistry Easton 2011, 50, 4697. <http://dx.doi.org/10.1021/bi101362g>
  • Walvoort Marthe T. C., de Witte Wilbert, van Dijk Jesse, Dinkelaar Jasper, Lodder Gerrit, Overkleeft Herman S., Codée Jeroen D. C., van der Marel Gijsbert A.: Mannopyranosyl Uronic Acid Donor Reactivity. Org Lett 2011, 13, 4360. <http://dx.doi.org/10.1021/ol2016862>
  • Desmet Tom, Soetaert Wim: Enzymatic glycosyl transfer: mechanisms and applications. Biocatal Biotransform 2011, 29, 1. <http://dx.doi.org/10.3109/10242422.2010.548557>
  • Suzuki R., Fujimoto Z., Ito S., Kawahara S.-I., Kaneko S., Taira K., Hasegawa T., Kuno A.: Crystallographic Snapshots of an Entire Reaction Cycle for a Retaining Xylanase from Streptomyces olivaceoviridis E-86. J Biochem 2009, 146, 61. <http://dx.doi.org/10.1093/jb/mvp047>
  • Hill Anthony D., Reilly Peter J.: Computational analysis of glycoside hydrolase family 1 specificities. Biopolymers (Biospectroscopy) 2008, 89, 1021. <http://dx.doi.org/10.1002/bip.21052>
  • Fushinobu Shinya, Mertz Blake, Hill Anthony D., Hidaka Masafumi, Kitaoka Motomitsu, Reilly Peter J.: Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase. Carbohydrates Research 2008, 343, 1023. <http://dx.doi.org/10.1016/j.carres.2008.02.026>
  • Mulakala Chandrika, Nerinckx Wim, Reilly Peter J.: The fate of β-d-mannopyranose after its formation by endoplasmic reticulum α-(1→2)-mannosidase I catalysis. Carbohydrates Research 2007, 342, 163. <http://dx.doi.org/10.1016/j.carres.2006.11.012>
  • Clot Eric, Eisenstein Odile, Crabtree Robert H.: Computational structure?activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem Commun 2007, 2231. <http://dx.doi.org/10.1039/b705037b>
  • Mulakala Chandrika, Nerinckx Wim, Reilly Peter J.: Docking studies on glycoside hydrolase Family 47 endoplasmic reticulum α-(1→2)-mannosidase I to elucidate the pathway to the substrate transition state. Carbohydrates Research 2006, 341, 2233. <http://dx.doi.org/10.1016/j.carres.2006.05.011>
  • Nerinckx W., Desmet T., Piens K., Claeyssens M.: An elaboration on the syn–anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Letters 2005, 579, 302. <http://dx.doi.org/10.1016/j.febslet.2004.12.021>
  • Collins T., De Vos D., Hoyoux A., Savvides S.N., Gerday C., Van Beeumen J., Feller G.: Study of the Active Site Residues of a Glycoside Hydrolase Family 8 Xylanase. Journal of Molecular Biology 2005, 354, 425. <http://dx.doi.org/10.1016/j.jmb.2005.09.064>
  • Nerinckx W., Desmet T., Claeyssens M.: A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases. FEBS Letters 2003, 538, 1. <http://dx.doi.org/10.1016/S0014-5793(03)00148-0>
  • Garegg Per J, Johansson Karl-Jonas, Konradsson Peter, Lindberg Bengt, Trumpakaj Zygmunt: Transglucosidation of methyl and ethyl d-glucopyranosides by alcoholysis. Carbohydrates Research 2002, 337, 517. <http://dx.doi.org/10.1016/S0008-6215(02)00005-8>
  • Pullumbi P., Lemeune S., Barbe J.-M., Trichet A., Guilard R.: Experimental and theoretical study of stereoelectronic and H-bond control of reactivity in ��- and ��-methyl d-glucopyranoside ozonolysis. Journal of Molecular Structure: THEOCHEM 1998, 432, 169. <http://dx.doi.org/10.1016/S0166-1280(97)00411-9>
  • Holzapfel Cedric W., Engelbrecht Gerhard J., Marais Lizel, Toerien Francois: Stereocontrolled palladium(0) catalysed cyclisation and cyclisation/carbonylation of pseudoglycal derivatives. Tetrahedron 1997, 53, 3957. <http://dx.doi.org/10.1016/S0040-4020(97)00012-4>
  • Tvaro��ka Igor, Carver Jeremy P., Ragazzi Massimo, Ferro Dino R., Senderowitz Hanoch, Fuchs Benzion: Ab initio molecular orbital calculation of carbohydrate model compounds 4. Flexibility of ��-type glycosidic bonds in carbohydrates. Journal of Molecular Structure: THEOCHEM 1997, 395-396, 1. <http://dx.doi.org/10.1016/S0166-1280(96)04957-3>
  • Moreau Claude, Lecomte Jérôme, Mseddi Samir, Zmimita Najib: Stereoelectronic effects in hydrolysis and hydrogenolysis of acetals and thioacetals in the presence of heterogeneous catalysts. Journal of Molecular Catalysis A 1997, 125, 143. <http://dx.doi.org/10.1016/S1381-1169(97)00083-6>
  • Yu Mi Ahn, Gray Gary R.: Mechanism of anomerization of cyclohexyl 2-deoxy-3,4,6-tri-O-methyl-2-(N-methylacetamido)-α- and β-d-hexopyranosides under reductive-cleavage conditions. Carbohydrates Research 1996, 296, 215. <http://dx.doi.org/10.1016/S0008-6215(96)00251-0>
  • Golender Larisa, Senderowitz Hanoch, Fuchs Benzion: Relative stabilities and conformational ring inversion potentials in heterocyclic decalin systems and stereoelectronic implications. Journal of Molecular Structure: THEOCHEM 1996, 370, 221. <http://dx.doi.org/10.1016/S0166-1280(96)04704-5>
  • Wong C.-H., Halcomb Randall L., Ichikawa Yoshitaka, Kajimoto Tetsuya: Enzyme in der organischen Synthese: das Problem der molekularen Erkennung von Kohlenhydraten (Teil 2). Angew Chem 1995, 107, 569. <http://dx.doi.org/10.1002/ange.19951070505>
  • Perrin Charles L.: Reverse anomeric effect: fact or fiction?. Tetrahedron 1995, 51, 11901. <http://dx.doi.org/10.1016/0040-4020(95)00560-U>
  • Li Shigui, Kirby Anthony J., Deslongchamps Pierre: First experimental evidence for a synperiplanar stereoelectronic effect in the acid hydrolysis of acetal. Tetrahetron Lett 1993, 34, 7757. <http://dx.doi.org/10.1016/S0040-4039(00)61558-7>