CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1992, Vol. 64, No. 7, pp. 909-918

http://dx.doi.org/10.1351/pac199264070909

Initiation of SHS processes

V. V. Barzykin

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Rosa Roberto, Veronesi Paolo, Leonelli Cristina: A review on combustion synthesis intensification by means of microwave energy. Chemical Engineering and Processing: Process Intensification 2013, 71, 2. <http://dx.doi.org/10.1016/j.cep.2013.02.007>
  • Rosa Roberto, Veronesi Paolo, Han Shahoua, Casalegno Valentina, Salvo Milena, Colombini Elena, Leonelli Cristina, Ferraris Monica: Microwave assisted combustion synthesis in the system Ti–Si–C for the joining of SiC: Experimental and numerical simulation results. Journal of the European Ceramic Society 2013, 33, 1707. <http://dx.doi.org/10.1016/j.jeurceramsoc.2013.03.005>
  • Fritz Gregory M., Spey Stephen J., Grapes Michael D., Weihs Timothy P.: Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy. J. Appl. Phys. 2013, 113, 014901. <http://dx.doi.org/10.1063/1.4770478>
  • Morsi K.: The diversity of combustion synthesis processing: a review. J Mater Sci 2012, 47, 68. <http://dx.doi.org/10.1007/s10853-011-5926-5>
  • Bacciochini A., Radulescu M.I., Charron-Tousignant Y., Van Dyke J., Nganbe M., Yandouzi M., Lee J.J., Jodoin B.: Enhanced reactivity of mechanically-activated nano-scale gasless reactive materials consolidated by coldspray. Surface and Coatings Technology 2012, 206, 4343. <http://dx.doi.org/10.1016/j.surfcoat.2012.02.024>
  • Khobta I., Petukhov O., Vasylkiv O., Sakka Y., Ragulya A.: Synthesis and consolidation of TiN/TiB2 ceramic composites via reactive spark plasma sintering. J Alloys Comp 2011, 509, 1601. <http://dx.doi.org/10.1016/j.jallcom.2010.10.198>
  • Gennari Silvia, Anselmi-Tamburini Umberto, Maglia Filippo, Spinolo Giorgio: Modeling the ignition of self-propagating combustion synthesis of transition metal aluminides. Intermet 2010, 18, 2385. <http://dx.doi.org/10.1016/j.intermet.2010.08.008>
  • Feng Keqin, Xiong Ji, Sun Lan, Fan Hongyuan, Zhou Xiang: The process of combustion synthesis of WC–Co composites under the action of an electric field. J Alloys Comp 2010, 504, 277. <http://dx.doi.org/10.1016/j.jallcom.2010.05.112>
  • Reeves Robert V., Mukasyan Alexander S., Son Steven F.: Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems. J. Phys. Chem. C 2010, 114, 14772. <http://dx.doi.org/10.1021/jp104686z>
  • Poli G., Sola R., Veronesi P.: Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation. Mater Sei Eng A 2006, 441, 149. <http://dx.doi.org/10.1016/j.msea.2006.08.114>
  • Monagheddu M., Bertolino N., Giuliani P., Zanotti C., Tamburini U. Anselmi: Ignition phenomena in combustion synthesis: An experimental methodology. J Appl Phys 2002, 92, 594. <http://dx.doi.org/10.1063/1.1486254>
  • Makino A.: Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process. Prog Energy Combust Sci 2001, 27, 1. <http://dx.doi.org/10.1016/S0360-1285(00)00004-6>
  • Morsi K.: Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sei Eng A 2001, 299, 1. <http://dx.doi.org/10.1016/S0921-5093(00)01407-6>
  • Makino Atsushi: Initiation of SHS Flame Induced by Another SHS Flame—Evaluation of the Ignition Energy. J Energy Resour Technol 2001, 123, 70. <http://dx.doi.org/10.1115/1.1345892>
  • Makino Atsushi, Law C.K.: Transient radiative initiation of the heterogeneous flame in self-propagating high-temperature materials synthesis: Theory and experimental comparisons. Proc Combust Inst 2000, 28, 1439. <http://dx.doi.org/10.1016/S0082-0784(00)80360-4>
  • He Cheng, Stangle Gregory C.: A micromechanistic model of the combustion synthesis process: Modes of ignition. J Mater Res 1998, 13, 135. <http://dx.doi.org/10.1557/JMR.1998.0019>
  • He Cheng, Stangle Gregory C.: A micromechanistic model of the combustion synthesis process: Mechanism of ignition. J Mater Res 1998, 13, 146. <http://dx.doi.org/10.1557/JMR.1998.0020>
  • ALDUSHIN A. P., MATKOWSKY B. J., SCHULT D. A.: Buoyancy Driven Filtration Combustion. Combust Sci Techn 1997, 125, 283. <http://dx.doi.org/10.1080/00102209708935662>
  • Moore John J., Feng H.J.: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog Mater Sci 1995, 39, 243. <http://dx.doi.org/10.1016/0079-6425(94)00011-5>
  • Moore John J., Feng H.J.: Combustion synthesis of advanced materials: Part II. Classification, applications and modelling. Prog Mater Sci 1995, 39, 275. <http://dx.doi.org/10.1016/0079-6425(94)00012-3>
  • MERZHANOV A. G.: Fluid Dynamics Phenomena in the Processes of Self-Propagating High-Temperature Synthesis. Combust Sci Techn 1995, 105, 295. <http://dx.doi.org/10.1080/00102209508907756>
  • Barzykin Vadim V., Merzhanov Aleksandr G.: Ignition of energetic materials under conditions of complex heat exchange. Journal of Propulsion and Power 1995, 11, 816. <http://dx.doi.org/10.2514/3.23906>
  • MERZHANOV A. G.: Solid Flames: Discoveries, Concepts, and Horizons of Cognition. Combust Sci Techn 1994, 98, 307. <http://dx.doi.org/10.1080/00102209408935417>