CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1989, Vol. 61, No. 10, pp. 1747-1754

A new view of the Fischer-Tropsch polymerisation reaction

P. M. Maitlis

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Corral Valero Manuel, Raybaud Pascal: Cobalt Catalyzed Fischer–Tropsch Synthesis: Perspectives Opened by First Principles Calculations. Catal Lett 2013, 143, 1. <>
  • Vahid S., Mirzaei A.A.: An investigation of the kinetics and mechanism of Fischer–Tropsch synthesis on Fe–Co–Ni supported catalyst. Journal of Industrial and Engineering Chemistry 2013. <>
  • Fazlollahi F., Sarkari M., Gharebaghi H., Atashi H., Zarei M.M., Mirzaei A.A., Hecker W.C.: Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide. Chinese Journal of Chemical Engineering 2013, 21, 507. <>
  • Nabipoor Hassankiadeh Mojtaba, Haghtalab Ali: PRODUCT DISTRIBUTION OF FISCHER-TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR BASED ON LANGMUIR-FREUNDLICH ISOTHERM. Chemical Engineering Communications 2013, 200, 1170. <>
  • Arsalanfar M., Mirzaei A.A., Atashi H., Bozorgzadeh H.R., Vahid S., Zare A.: An investigation of the kinetics and mechanism of Fischer–Tropsch synthesis on Fe–Co–Mn supported catalyst. Fuel Proc Techn 2012, 96, 150. <>
  • Sarkari Majid, Fazlollahi Farhad, Atashi Hossein, Mirzaei Ali Akbar, Hosseinpour Vahid: Fischer–Tropsch synthesis: Development of kinetic expression for a sol–gel Fe–Ni/Al2O3 catalyst. Fuel Proc Techn 2012, 97, 130. <>
  • James Olusola O., Chowdhury Biswajit, Mesubi M. Adediran, Maity Sudip: Reflections on the chemistry of the Fischer–Tropsch synthesis. RSC Adv. 2012, 2, 7347. <>
  • Fontenelle A. B., Fernandes F. A. N.: Comprehensive Polymerization Model for Fischer-Tropsch Synthesis. Chem Eng Technol 2011, 34, 963. <>
  • Visconti Carlo Giorgio, Lietti Luca, Tronconi Enrico, Forzatti Pio, Zennaro Roberto, Rossini Stefano: Detailed kinetics of the Fischer–Tropsch synthesis over Co-based catalysts containing sulphur. Catal Today 2010, 154, 202. <>
  • Lo John M. H., Ziegler Tom: A First-Principle Study of Chain Propagation Steps in the Fischer−Tropsch Synthesis on Fe(100). J. Phys. Chem. C 2008, 112, 13681. <>
  • Fernandes F. A. N.: Polymerization Kinetics of Fischer-Tropsch Reaction on Iron Based Catalysts and Product Grade Optimization. Chem Eng Technol 2005, 28, 930. <>
  • Davis Burtron H.: Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Proc Techn 2001, 71, 157. <>
  • Overett Matthew J., Hill R.Oliver, Moss John R.: Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis. Coord Chem Rev - 2000, 206-207, 581. <>
  • Shi Buchang, Davis Burtron H.: 13C-tracer study of the Fischer–Tropsch synthesis: another interpretation. Catal Today 2000, 58, 255. <>
  • Wang Zhi-Qiang, Turner Michael L., Ryszard Kunicki A., Maitlis Peter M.: Vinyl-plus-vinyl coupling in rhodium complexes: formation of [(C5Me5)RhBr(η3-syn-1-methylallyl)] be reaction of [(C5Me5)RhBr2(Me2SO)] with vinylmagnesium bromide in homogeneous solution. J Organomet Chem 1995, 488, C11. <>
  • Maitlis Peter M.: The lively chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes, analogues of surface reactions in heterogeneous catalysis. J Organomet Chem 1995, 500, 239. <>
  • Wang Zhi-Qiang, Turner Michael L., Taylor Brian F., Maitlis Peter M.: [{(C5Me5)Rh(μ-CH2)}2(Me)(η2−CH2CH2)]PF6, a rhodium(IV) ethylene complex. J Polyhedron 1995, 14, 2767. <>
  • Wang Li-Sheng, Cowie Martin: Alkyne transformations at RhMn centres. Facile conversion between parallel and perpendicular alkyne binding modes and conversions to vinyl groups. Can J Chem 1995, 73, 1058. <>
  • Martinez Jesus, Gill John B., Adams Harry, Bailey Neil A., Saez Isabel M., Sunley Glenn J., Maitlis Peter M.: Syntheses, structures, and reactions of alkenyl-dirhodium complexes: coupling μ-methylene and σ-vinyl to allyl; an entry to μ-ethylidene-μ-methylene dirhodium complexes. Crystal structures of [{(C5Me5Rh)(μ-CH2)(CHCH2)}2] and [(C5Me5Rh)2(μ-CH2)(μ-CHMe)Cl2]. J Organomet Chem 1990, 394, 583. <>