CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1985, Vol. 57, No. 8, pp. 1031-1042

http://dx.doi.org/10.1351/pac198557081031

The structure of aqueous electrolyte solutions as derived from MD (molecular dynamics) simulations

K. Heinzinger

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Feakins David, McCarthy Patrick J., O’Neill Robert D., Sheiha Lobna, Waghorne W. Earle: Transport of Water by Group 1 and 2 Ions with t-Butyl Alcohol as Reference Substance: Comparison with Raffinose and Dioxan. J Solution Chem 2014, 43, 40. <http://dx.doi.org/10.1007/s10953-013-0035-5>
  • Ge Ling, Bernasconi Leonardo, Hunt Patricia: Linking electronic and molecular structure: insight into aqueous chloride solvation. Phys. Chem. Chem. Phys. 2013, 15, 13169. <http://dx.doi.org/10.1039/c3cp50652e>
  • Śmiechowski Maciej, Forbert Harald, Marx Dominik: Spatial decomposition and assignment of infrared spectra of simple ions in water from mid-infrared to THz frequencies: Li+(aq) and F−(aq). J. Chem. Phys. 2013, 139, 014506. <http://dx.doi.org/10.1063/1.4812396>
  • Reif Maria M., Hünenberger Philippe H.: Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. Journal Chemical Physics 2011, 134, 144104. <http://dx.doi.org/10.1063/1.3567022>
  • Tongraar Anan, T-Thienprasert Jiraroj, Rujirawat Saroj, Limpijumnong Sukit: Structure of the hydrated Ca2+ and Cl−: Combined X-ray absorption measurements and QM/MM MD simulations study. Phys Chem Chem Phys 2010, 12, 10876. <http://dx.doi.org/10.1039/c0cp00136h>
  • Feakins David, Bates Fiona M., Waghorne W. Earle: Quasi-thermodynamics of Viscous Flow of Electrolyte Solutions in Aqueous, Non-aqueous and Mixed Aqueous Solvents. J Solution Chem 2008, 37, 727. <http://dx.doi.org/10.1007/s10953-008-9271-5>
  • Madarász Ádám, Rossky Peter J., Turi László: Excess electron relaxation dynamics at water/air interfaces. J Chem Phys 2007, 126, 234707. <http://dx.doi.org/10.1063/1.2741514>
  • Smirnov P. R., Trostin V. N.: Structure of the nearest surrounding of the Li+ ion in aqueous solutions of its salts. Russ J Gen Chem 2006, 76, 175. <http://dx.doi.org/10.1134/S1070363206020034>
  • Kritayakornupong Chinapong, Rode Bernd M.: Molecular dynamics simulations of Hg[sup 2+] in aqueous solution including N-body effects. J Chem Phys 2003, 118, 5065. <http://dx.doi.org/10.1063/1.1553761>
  • Zhou Jian, Lu Xiaohua, Wang Yanru, Shi Jun: Molecular dynamics study on ionic hydration. Fluid Phase Equilb 2002, 194-197, 257. <http://dx.doi.org/10.1016/S0378-3812(01)00694-X>
  • Marques M Alves, Caba$ccedil$o M I, Marques M I de Barros, Gaspar A M: Intermediate-range order in aqueous solutions of salts constituted of divalent ions combined with monovalent counter-ions. J Phys Condens Matter 2002, 14, 7427. <http://dx.doi.org/10.1088/0953-8984/14/32/303>
  • Zasetsky Alexander Yu., Svishchev Igor M.: Dielectric response of concentrated NaCl aqueous solutions: Molecular dynamics simulations. J Chem Phys 2001, 115, 1448. <http://dx.doi.org/10.1063/1.1381055>
  • Schurhammer Rachel, Wipff Georges, Berny Frédéric: Distribution of hydrophilic, amphiphilic and hydrophobic ions at a liquid/liquid interface: a molecular dynamics investigation. Inorg Chim Ada 2000, 300-302, 384. <http://dx.doi.org/10.1016/S0020-1693(99)00561-7>
  • Ignaczak Anna, Gomes J.A.N.F., Cordeiro M.N.D.S.: Quantum and simulation studies of X−(H2O)n systems. Electrochimica Acta 1999, 45, 659. <http://dx.doi.org/10.1016/S0013-4686(99)00245-5>
  • Toney Michael F., Howard Jason N., Richer Jocelyn, Borges Gary L., Gordon Joseph G., Melroy Owen R., Wiesler David G., Yee Dennis, Sorensen Larry B.: Distribution of water molecules at Ag(111)/electrolyte interface as studied with surface X-ray scattering. Surf Sei 1995, 335, 326. <http://dx.doi.org/10.1016/0039-6028(95)00455-6>
  • Shi Zhong-Guo, McCullough E. A.: A computer simulation — Statistical procedure for predicting complexation equilibrium constants. J Incl Phenom Macrocycl Chem 1994, 18, 9. <http://dx.doi.org/10.1007/BF00706935>
  • Laurs Norbert, Bopp Philippe: Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution. Berichte der Bunsengesellschaft für physikalische Chemie 1993, 97, 982. <http://dx.doi.org/10.1002/bbpc.19930970806>
  • Wang Jianji, Zeng Ling, Liu Wenbin, Lu Jinsuo: A thermodynamic study of the ternary system water + glucose + electrolyte at 298.15 K. Thermochimica 1993, 224, 261. <http://dx.doi.org/10.1016/0040-6031(93)80176-B>
  • Zhu Sheng-Bai, Robinson G. Wilse: Molecular-dynamics computer simulation of an aqueous NaCl solution: Structure. J Chem Phys 1992, 97, 4336. <http://dx.doi.org/10.1063/1.463903>
  • Hummer Gerhard, Soumpasis Dikeos M.: An extended RISM study of simple electrolytes: pair correlations in a NaCl-SPC water model. Mole Phys 1992, 75, 633. <http://dx.doi.org/10.1080/00268979200100461>
  • Zhao Xin Gui, Gonzalez-Lafont Angels, Truhlar Donald G., Steckler Rozeanne: Molecular modeling of solvation. Cl−(D2O). J Chem Phys 1991, 94, 5544. <http://dx.doi.org/10.1063/1.460490>
  • Enderby J E: The Study of Complex Liquids. Phys Scr 1991, t39, 378. <http://dx.doi.org/10.1088/0031-8949/1991/T39/060>
  • Schwendinger Michael G., M. Rode Bernd: A Monte Carlo simulation of a supersaturated sodium chloride solution. chem phys letts 1989, 155, 527. <http://dx.doi.org/10.1016/0009-2614(89)87467-6>
  • Breen J., Huis L., De Bleijser J, Leyte J. C.: Ion Relaxation in Aqueous Polyethyleneoxide Solutions Studied by Nuclear Magnetic Relaxation. Berichte der Bunsengesellschaft für physikalische Chemie 1988, 92, 160. <http://dx.doi.org/10.1002/bbpc.198800037>
  • Kusalik P. G., Patey G. N.: On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration. J Chem Phys 1988, 88, 7715. <http://dx.doi.org/10.1063/1.454286>
  • Kusalik P. G., Patey G. N.: On the molecular theory of aqueous electrolyte solutions. II. Structural and thermodynamic properties of different models at infinite dilution. J Chem Phys 1988, 89, 5843. <http://dx.doi.org/10.1063/1.455535>
  • Schnitker Jürgen, Rossky Peter J.: Quantum simulation study of the hydrated electron. J Chem Phys 1987, 86, 3471. <http://dx.doi.org/10.1063/1.452003>
  • Bopp P.: A study of the vibrational motions of water in an aqueous CaCl2 solution. Chemical Phys 1986, 106, 205. <http://dx.doi.org/10.1016/0301-0104(86)80138-0>
  • Pálinkás G., Heinzinger K.: Hydration shell structure of the calcium ion. chem phys letts 1986, 126, 251. <http://dx.doi.org/10.1016/S0009-2614(86)80078-1>
  • Pettitt B. Montgomery, Rossky Peter J.: Alkali halides in water: Ion–solvent correlations and ion–ion potentials of mean force at infinite dilution. J Chem Phys 1986, 84, 5836. <http://dx.doi.org/10.1063/1.449894>