CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1985, Vol. 57, No. 7, pp. 905-912

http://dx.doi.org/10.1351/pac198557070905

Applications of solubility parameters and other cohesion parameters in polymer science and technology

A. F. M. Barton

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Johnson Calynn E., Boucher David S.: Poly(3-hexylthiophene) aggregate formation in binary solvent mixtures: An excitonic coupling analysis. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 526. <http://dx.doi.org/10.1002/polb.23447>
  • Kim Seil, Lee Young-In, Kim Dong-Hwan, Lee Kun-Jae, Kim Bum-Sung, Hussain Manwar, Choa Yong-Ho: Estimation of dispersion stability of UV/ozone treated multi-walled carbon nanotubes and their electrical properties. Carbon 2013, 51, 346. <http://dx.doi.org/10.1016/j.carbon.2012.08.062>
  • Masuelli Martin Alberto: Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry 2013, 2013, 1. <http://dx.doi.org/10.1155/2013/360239>
  • Stefanis Emmanuel, Panayiotou Costas: A new expanded solubility parameter approach. Int J of Pharmaceutics 2012, 426, 29. <http://dx.doi.org/10.1016/j.ijpharm.2012.01.001>
  • Eisermann C., Mallembakam M.R., Damm C., Peukert W., Breitung-Faes S., Kwade A.: Polymeric stabilization of fused corundum during nanogrinding in stirred media mills. Powder Tech 2012, 217, 315. <http://dx.doi.org/10.1016/j.powtec.2011.10.043>
  • Panayiotou Costas: Redefining solubility parameters: the partial solvation parameters. PCCP 2012, 14, 3882. <http://dx.doi.org/10.1039/c2cp23966c>
  • Shah Malay, Agrawal Yadvendra: Ciprofloxacin hydrochloride-loaded glyceryl monostearate nanoparticle: factorial design of Lutrol F68 and Phospholipon 90G. J Microencapsulation 2012, 29, 331. <http://dx.doi.org/10.3109/02652048.2011.651498>
  • Wattanakul Karnthidaporn, Manuspiya Hathaikarn, Yanumet Nantaya: Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J Appl Polym Sci 2011, 119, 3234. <http://dx.doi.org/10.1002/app.32889>
  • Adachi Kenta, Honda Kensuke, Yamazaki Suzuko, Hirano Tomoyuki, Kurokawa Hiroshi, Wakabayashi Akinobu, Kasai Paul H., Nakamae Katsuhiko, Iwabuki Hitoshi, Murakami Koji: In situ binary sol-gel reaction of various trifunctional alkoxysilane in the silane-grafted polyolefin matrix and its effect upon the mechanical properties. Polym Eng Sci 2011, 51, 632. <http://dx.doi.org/10.1002/pen.21856>
  • ATARASHI Hironori, FUJII Yoshihisa, YAMAZAKI Dai, HINO Masahiro, MORITA Hiroshi, TANAKA Keiji: Density Distributions of Poly(methyl methacrylate)Thin Films in Non-Solvents. KOBUNSHI RONBUNSHU 2011, 68, 608. <http://dx.doi.org/10.1295/koron.68.608>
  • Adachi Kenta, Hirano Tomoyuki, Kasai Paul H, Nakamae Katsuhiko, Iwabuki Hitoshi, Murakami Koji: Ethylene-propylene copolymer/ordered polysilsesquioxane nanocomposites prepared via organic acid- or base-catalyzed binary silica water-crosslinking reactions. Polym Int 2010, 59, 510. <http://dx.doi.org/10.1002/pi.2729>
  • Mauldin Timothy C., Kessler Michael R.: Enhanced bulk catalyst dissolution for self-healing materials. J Mater Chem 2010, 20, 4198. <http://dx.doi.org/10.1039/c0jm00521e>
  • Ortiz-Estrada C. H., Luna-Bárcenas G., Alvarado J. F. J., González-Alatorre G., Sanchez I. C., Ramírez N. Flores, García Salomón R. Vásquez, Castillo-Tejas J., Manero-Brito O.: Polymer Chain Collapse in Supercritical Fluids. 2. Experimental Evidence. Macromol Symp 2009, 283-284, 266. <http://dx.doi.org/10.1002/masy.200950932>
  • Adachi Kenta, Hirano Tomoyuki: The utility of sulfonic acid catalysts for silane water-crosslinked network formation in the ethylene–propylene copolymer system. J Sol-Gel Sci Techn 2009, 49, 186. <http://dx.doi.org/10.1007/s10971-008-1857-2>
  • Karunanithi Arunprakash T., Acquah Charles, Achenie Luke E.K., Sithambaram Shanthakumar, Suib Steven L.: Solvent design for crystallization of carboxylic acids. Comput Chem Engrg 2009, 33, 1014. <http://dx.doi.org/10.1016/j.compchemeng.2008.11.003>
  • Acquah Charles, Karunanithi Arunprakash T., Cagnetta Matthew, Achenie Luke E.K., Suib Steven L.: Linear models for prediction of ibuprofen crystal morphology based on hydrogen bonding propensities. Fluid Phase Equilb 2009, 277, 73. <http://dx.doi.org/10.1016/j.fluid.2008.11.015>
  • Safa Laurent, Zaki Oussama, Leprince Yamin, Feigenbaum Alexandre: Evaluation of model compounds–polypropylene film interactions by Fourier transformed infrared spectroscopy (FTIR) method. Packag Technol Sci 2008, 21, 149. <http://dx.doi.org/10.1002/pts.788>
  • Demircan D., Kibarer G., Güner A., Rzaev Z.M.O., Ersoy E.: The synthesis of poly(MA-alt-NIPA) copolymer, spectroscopic characterization, and the investigation of solubility profile-viscosity behavior. Carbohyd Polymers 2008, 72, 682. <http://dx.doi.org/10.1016/j.carbpol.2007.10.007>
  • Adachi Kenta, Hirano Tomoyuki: Good linear relationship between logarithms of Eigen’s water exchange constants for several divalent metal ions and activation energies of corresponding metal-catalyzed alkoxysilane hydrolysis in ethylene–propylene copolymer system. Euro Poly J 2008, 44, 542. <http://dx.doi.org/10.1016/j.eurpolymj.2007.11.033>
  • Adachi Kenta, Hirano Tomoyuki, Fukuda Katsuhito, Nakamae Katsuhiko: Accelerated Silane Water-Crosslinking Kinetics of Ethylene–Propylene Copolymer by Boron Trifluoride Complexes. Macromol React Eng 2007, 1, 313. <http://dx.doi.org/10.1002/mren.200600044>
  • Launay H�l�ne, Hansen Charles M., Almdal Kristoffer: Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon 2007, 45, 2859. <http://dx.doi.org/10.1016/j.carbon.2007.10.011>
  • Özdemir C., Güner A.: Solubility profiles of poly(ethylene glycol)/solvent systems, I: Qualitative comparison of solubility parameter approaches. Euro Poly J 2007, 43, 3068. <http://dx.doi.org/10.1016/j.eurpolymj.2007.02.022>
  • Evans Katherine M., Hardy James K.: Predicting solubility and permeation properties of organic solvents in Viton glove material using Hansen's solubility parameters. J Appl Polym Sci 2004, 93, 2688. <http://dx.doi.org/10.1002/app.20841>
  • Martini Luigi G, Avontuur Paul, George Ashley, Willson Richard J, Crowley Patrick J: Solubility parameter and oral absorption. Eur J Pharma Biopharm 1999, 48, 259. <http://dx.doi.org/10.1016/S0939-6411(99)00055-7>
  • Miller R. G., Bowles C. Q., Chappelow C. C., Eick J. D.: Application of solubility parameter theory to dentin-bonding systems and adhesive strength correlations. J Biomed Mater Res 1998, 41, 237. <http://dx.doi.org/10.1002/(SICI)1097-4636(199808)41:2<237::AID-JBM8>3.0.CO;2-J>
  • Cowie J.M.G., Reid V.M.C., McEwen I.J.: Prediction of the miscibility range in blends of poly(styrene-co-acrylonitrile) and poly(N-phenyl itaconimide-co-methyl methacrylate): a six-interaction-parameter system. Poly 1990, 31, 486. <http://dx.doi.org/10.1016/0032-3861(90)90390-K>
  • Munafo Alain, Buchmann Michel, Tran HÔ Nam, Kesselring Ulrich W.: Determination of the total and partial cohesion parameters of lipophilic liquids by gas-liquid chromatography and from molecular properties. J Pharm Sci 1988, 77, 169. <http://dx.doi.org/10.1002/jps.2600770215>
  • Huu-Phuoc Nguyen, Nam-Tran Hô, Buchmann Michel, Kesselring Ulrich W.: Experimentally optimized determination of the partial and total cohesion parameters of an insoluble polymer (microcrystalline cellulose) by gas-solid chromatography. Int J of Pharmaceutics 1987, 34, 217. <http://dx.doi.org/10.1016/0378-5173(87)90183-9>