Pure Appl. Chem., 1981, Vol. 53, No. 8, pp. 1489-1494
http://dx.doi.org/10.1351/pac198153081489
Mechanical properties near gelation threshold, comparison with classical and 3d percolation theories
CrossRef Cited-by Linking
- Garcia G.D., Sanchez-Varretti F.O., Centres P.M., Ramirez-Pastor A.J.: Percolation of polyatomic species on a simple cubic lattice. Eur. Phys. J. B 2013, 86. <http://dx.doi.org/10.1140/epjb/e2013-40509-1>
- Longone P., Centres P., Ramirez-Pastor A.: Percolation of aligned rigid rods on two-dimensional square lattices. Physical Reviews E 2012, 85, 011108. <http://dx.doi.org/10.1103/PhysRevE.85.011108>
- Christensen C., Bizhani G., Son S.-W., Paczuski M., Grassberger P.: Agglomerative percolation in two dimensions. Europhys Letts 2012, 97, 16004. <http://dx.doi.org/10.1209/0295-5075/97/16004>
- Dai Lin, Liu Xinxing, Tong Zhen: Critical behavior at sol–gel transition in gellan gum aqueous solutions with KCl and CaCl2 of different concentrations. Carbohyd Polymers 2010, 81, 207. <http://dx.doi.org/10.1016/j.carbpol.2010.02.013>
- Cañamero-Martínez Pedro, Fernández-García Marta, Fuente José Luis de la: Rheological cure characterization of a polyfunctional epoxy acrylic resin. React & Funct Polym 2010, 70, 761. <http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.010>
- Dai Lin, Liu Xinxing, Liu Yiliao, Tong Zhen: Concentration dependence of critical exponents for gelation in gellan gum aqueous solutions upon cooling. Euro Poly J 2008, 44, 4012. <http://dx.doi.org/10.1016/j.eurpolymj.2008.09.032>
- Lu Lu, Liu Xinxing, Tong Zhen: Critical exponents for sol–gel transition in aqueous alginate solutions induced by cupric cations. Carbohyd Polymers 2006, 65, 544. <http://dx.doi.org/10.1016/j.carbpol.2006.02.010>
- Malkin A.Ya., Gorbunova I.Yu., Kerber M.L.: Comparison of four methods for monitoring the kinetics of curing of a phenolic resin. Polym Eng Sci 2005, 45, 95. <http://dx.doi.org/10.1002/pen.20234>
- Löwe Henning, Müller Peter, Zippelius Annette: Dynamics of gelling liquids: a short survey. J Phys Condens Matter 2005, 17, S1659. <http://dx.doi.org/10.1088/0953-8984/17/20/002>
- Veerman Cecile, Sagis Leonard M. C., Venema Paul, van der Linden Erik: The effect of shear flow on the percolation concentration of fibrillar protein assemblies. J Rheol 2005, 49, 355. <http://dx.doi.org/10.1122/1.1859793>
- Kozlov G. V., Bejev A. A., Lipatov Yu. S.: The fractal analysis of curing processes of epoxy resins. J Appl Polym Sci 2004, 92, 2558. <http://dx.doi.org/10.1002/app.20222>
- Müller Peter: Critical behaviour of the Rouse model for gelling polymers. J Phys A Math Gen 2003, 36, 10443. <http://dx.doi.org/10.1088/0305-4470/36/42/002>
- Plischke Michael, Vernon D., Joós Béla: Model for gelation with explicit solvent effects: Structure and dynamics. Phys Rev E 2003, 67, 011401. <http://dx.doi.org/10.1103/PhysRevE.67.011401>
- Jespersen Sune, Plischke Michael: Transport properties of incipient gels. Phys Rev E 2003, 68, 021403. <http://dx.doi.org/10.1103/PhysRevE.68.021403>
- Broderix Kurt, Müller Peter, Zippelius Annette: Normal stresses at the gelation transition. Phys Rev E 2002, 65, 041505. <http://dx.doi.org/10.1103/PhysRevE.65.041505>
- Nourry J., Sixou P.: Formation of polymer network liquid crystal microcomposites: evolution of mechanical properties during the curing process. Liq Crist 2001, 28, 651. <http://dx.doi.org/10.1080/02678290010020896>
- Vernon Daniel, Plischke Michael, Joós Béla: Viscoelasticity near the gel point: A molecular dynamics study. Phys Rev E 2001, 64, 031505. <http://dx.doi.org/10.1103/PhysRevE.64.031505>
- Castillo Horacio, Goldbart Paul: Semimicroscopic theory of elasticity near the vulcanization transition. Phys Rev E 2000, 62, 8159. <http://dx.doi.org/10.1103/PhysRevE.62.8159>
- Broderix Kurt, Löwe Henning, Müller Peter, Zippelius Annette: Critical dynamics of gelation. Phys Rev E 2000, 63, 011510. <http://dx.doi.org/10.1103/PhysRevE.63.011510>
- Broderix K, Löwe H, Müller P, Zippelius A: Shear viscosity of a crosslinked polymer melt. Europhys Lett 1999, 48, 421. <http://dx.doi.org/10.1209/epl/i1999-00500-3>
- Kozlov G. V., Novikov V. U., Gazaev M. A., Mikitaev A. K.: Structure of polymer networks as a percolation system. J Eng Phys Thermophys 1998, 71, 241. <http://dx.doi.org/10.1007/BF02681542>
- Hild Gérard: Model networks based on `endlinking' processes: synthesis, structure and properties. Prog Polym Sci 1998, 23, 1019. <http://dx.doi.org/10.1016/S0079-6700(97)00055-5>
- Sahimi Muhammad: Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 1998, 306, 213. <http://dx.doi.org/10.1016/S0370-1573(98)00024-6>
- Gado Emanuela Del, Arcangelis Lucilla de, Coniglio Antonio: J Phys A Math Gen 1998, 31, 1901. <http://dx.doi.org/10.1088/0305-4470/31/8/004>
- Castillo Horacio, Goldbart Paul: Elasticity near the vulcanization transition. Phys Rev E 1998, 58, R24. <http://dx.doi.org/10.1103/PhysRevE.58.R24>
- Craciun F, Galassi C, Roncari E: Experimental evidence for similar critical behavior of elastic modulus and electric conductivity in porous ceramic materials. Europhys Lett 1998, 41, 55. <http://dx.doi.org/10.1209/epl/i1998-00115-8>
- Honghe Zheng, Kai Jiang, Qingzhi Zhang, Jianji Wang: Solvent effects on sol-gel transition of alginate solutions by addition of cupric ions. Chemical Phys 1996, 211, 507. <http://dx.doi.org/10.1016/0301-0104(96)00222-4>
- Zheng Honghe, Zhang Qingzhi, Jiang Kai, Zhang Hucheng, Wang Jianji: Critical behavior of viscosity for alginate solutions near the gelation threshold induced by cupric ions. J Chem Phys 1996, 105, 7746. <http://dx.doi.org/10.1063/1.472557>
- Plischke Michael, Barsky Sandra, Joós Béla, Zhou Zicong: Elastic properties of randomly cross-linked polymers. Phys Rev E 1996, 54, 5370. <http://dx.doi.org/10.1103/PhysRevE.54.5370>
- Goldbart Paul, Zippelius Annette: Amorphous solid state of vulcanized macromolecules: A variational approach. Phys Rev Letters 1993, 71, 2256. <http://dx.doi.org/10.1103/PhysRevLett.71.2256>
- Takigawa Toshikazu, Takahashi Masaoki, Urayama Kenji, Masuda Toshiro: Comparison of model prediction with experiment for concentration-dependent modulus of poly(vinyl alcohol) (PVA) gels near the gelation point. chem phys letts 1992, 195, 509. <http://dx.doi.org/10.1016/0009-2614(92)85553-M>
- Grinberg V.Ya., Grinberg N.V., Bikbov T.M., Bronich T.K., Mashkevich A.Ya.: Thermotropic gelation of food proteins. Food Hydrocoll 1992, 6, 69. <http://dx.doi.org/10.1016/S0268-005X(09)80058-1>
- Scanlan James C., Winter H. Henning: The evolution of viscoelasticity near the gel point of end-linking poly(dimethylsiloxane)s. Makromolekulare Chemie Macromolecular Symposia 1991, 45, 11. <http://dx.doi.org/10.1002/masy.19910450105>
- Axelos M. A. V., Kolb M.: Sol - gel transition in biopolymers. Makromolekulare Chemie Macromolecular Symposia 1991, 45, 23. <http://dx.doi.org/10.1002/masy.19910450106>
- Wang Zheng-Yu, Zhang Qing-Zhi, Konno Mikio, Saito Shozaburo: Sol—gel transition of alginate solution by additions of various divalent cations: critical behavior of relative viscosity. chem phys letts 1991, 186, 463. <http://dx.doi.org/10.1016/0009-2614(91)90210-Z>
- Basta M, Picciarelli V, Stella R: Eur J Phys 1991, 12, 210. <http://dx.doi.org/10.1088/0143-0807/12/5/004>
- Takigawa Toshikazu, Urayama Kenji, Masuda Toshiro: Critical behavior of the specific viscosity of poly(vinyl alcohol) solutions near the gelation threshold. Chemical Physics Letters 1990, 174, 259. <http://dx.doi.org/10.1016/0009-2614(90)85342-A>
- Daoud M, Lapp A: J Phys Condens Matter 1990, 2, 4021. <http://dx.doi.org/10.1088/0953-8984/2/18/001>
- Axelos M., Kolb M.: Crosslinked biopolymers: Experimental evidence for scalar percolation theory. Phys Rev Letters 1990, 64, 1457. <http://dx.doi.org/10.1103/PhysRevLett.64.1457>
- Arbabi Sepehr, Sahimi Muhammad: Critical properties of viscoelasticity of gels and elastic percolation networks. Phys Rev Letters 1990, 65, 725. <http://dx.doi.org/10.1103/PhysRevLett.65.725>
- Takigawa Toshikazu, Kasihara Hisahiko, Urayama Kenji, Masuda Toshiro: Critical Behavior of Modulus of Poly(vinylalcohol) Gels near the Gelation Point. J. Phys. Soc. Jpn. 1990, 59, 2598. <http://dx.doi.org/10.1143/JPSJ.59.2598>
- Woignier T., Phalippou J., Hdach H., Scherer G.W.: Mechanical Properties of Silica Alcogels and Aerogels. MRS Proc 1990, 180, 1087. <http://dx.doi.org/10.1557/PROC-180-1087>
- Tokita Masayuki: Gelation mechanism and percolation. Food Hydrocoll 1989, 3, 263. <http://dx.doi.org/10.1016/S0268-005X(89)80038-4>
- Martin James, Adolf Douglas, Wilcoxon Jess: Viscoelasticity near the sol-gel transition. Phys Rev A 1989, 39, 1325. <http://dx.doi.org/10.1103/PhysRevA.39.1325>
- Woignier T., Phalippou J., Vacher R.: Parameters affecting elastic properties of silica aerogels. J. Mater. Res. 1989, 4, 688. <http://dx.doi.org/10.1557/JMR.1989.0688>
- Martin James, Adolf Douglas, Wilcoxon Jess: Viscoelasticity of Near-Critical Gels. Phys Rev Letters 1988, 61, 2620. <http://dx.doi.org/10.1103/PhysRevLett.61.2620>
- Woignier T., Phalippou J., Vacher R.: Parameters Affecting Elastic Properties of Silica Aerogels. MRS Proc 1988, 121, 697. <http://dx.doi.org/10.1557/PROC-121-697>
- Shefer A., Gorodetsky G., Gottlieb M.: Gel Point Determination in Curing Polydimethylsiloxane Polymer Networks by Longitudinal Ultrasonic Waves. Mater Res Soc Proc 1988, 142, 233. <http://dx.doi.org/10.1557/PROC-142-233>
- Bahadur N, Herrmann H J, Landau D P: J Phys A Math Gen 1987, 20, L147. <http://dx.doi.org/10.1088/0305-4470/20/3/006>
- Tokita Masayuki, Hikichi Kunio: Mechanical studies of sol-gel transition: Universal behavior of elastic modulus. Phys Rev A 1987, 35, 4329. <http://dx.doi.org/10.1103/PhysRevA.35.4329>
- Herrmann H.J.: Geometrical cluster growth models and kinetic gelation. Phys Rep 1986, 136, 153. <http://dx.doi.org/10.1016/0370-1573(86)90047-5>
- Sahimi M: J Phys C Solid State Phys 1986, 19, L79. <http://dx.doi.org/10.1088/0022-3719/19/4/004>
- Candau S. J., Ankrim M., Munch J. P., Hild G.: In situ investigation by quasi-elastic light scattering of an irreversible sol-gel transition. Brit Polymer J 1985, 17, 210. <http://dx.doi.org/10.1002/pi.4980170222>
- Tokita Masayuki, Niki Ryoya, Hikichi Kunio: Critical behavior of modulus of gel. J Chem Phys 1985, 83, 2583. <http://dx.doi.org/10.1063/1.449848>
- Kolb M, Herrmann H J: J Phys A Math Gen 1985, 18, L435. <http://dx.doi.org/10.1088/0305-4470/18/8/007>
- Webman Itzhak, Grest Gary: Dynamical behavior of fractal structures. Phys Rev B 1985, 31, 1689. <http://dx.doi.org/10.1103/PhysRevB.31.1689>
- Feng Shechao: Percolation properties of granular elastic networks in two dimensions. Phys Rev B 1985, 32, 510. <http://dx.doi.org/10.1103/PhysRevB.32.510>
- Termonia Yves, Meakin Paul: New Kinetic Percolation Model with Diffusion-Limited Growth. Phys Rev Letters 1985, 54, 1083. <http://dx.doi.org/10.1103/PhysRevLett.54.1083>
- Deptuck D., Harrison J., Zawadzki P.: Measurement of elasticity and conductivity of a three-dimensional percolation system. Phys Rev Letters 1985, 54, 913. <http://dx.doi.org/10.1103/PhysRevLett.54.913>
- Herrmann H J, Hong D C, Stanley H E: J Phys A Math Gen 1984, 17, L261. <http://dx.doi.org/10.1088/0305-4470/17/5/008>
- Benguigui L.: Experimental Study of the Elastic Properties of a Percolating System. Phys Rev Letters 1984, 53, 2028. <http://dx.doi.org/10.1103/PhysRevLett.53.2028>
- Tokita Masayuki, Niki Ryoya, Hikichi Kunio: Percolation Theory and Elastic Modulus of Gel. J. Phys. Soc. Jpn. 1984, 53, 480. <http://dx.doi.org/10.1143/JPSJ.53.480>