CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1980, Vol. 52, No. 12, pp. 2649-2667

http://dx.doi.org/10.1351/pac198052122649

Heterogeneous electrochemical systems for solar energy conversion

Heinz Gerischer

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Genwa K.R., Sagar C.P.: Energy efficiency, solar energy conversion and storage in photogalvanic cell. Energy Conversion and Management 2013, 66, 121. <http://dx.doi.org/10.1016/j.enconman.2012.10.007>
  • Carver C., Ulissi Z., Ong C.K., Dennison S., Kelsall G.H., Hellgardt K.: Modelling and development of photoelectrochemical reactor for H2 production. Int Hydrogen Energy 2012, 37, 2911. <http://dx.doi.org/10.1016/j.ijhydene.2011.07.012>
  • He Duliang, Chen Mindong, Teng Fei, Li Guiqing, Shi Huaxia, Wang Jun, Xu Mengjiao, Lu Tianyun, Ji Xuequn, Lv Yingjie, Zhu Yongfa: Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure. Superlattices and Microstructures 2012, 51, 799. <http://dx.doi.org/10.1016/j.spmi.2012.03.026>
  • Dai Gaopeng, Yu Jiaguo, Liu Gang: A New Approach for Photocorrosion Inhibition of Ag2CO3 Photocatalyst with Highly Visible-Light-Responsive Reactivity. J. Phys. Chem. C 2012, 116, 15519. <http://dx.doi.org/10.1021/jp305669f>
  • Shi Rui, Xu Tongguang, Zhu Yongfa, Zhou Jun: High photocatalytic activity of oxychloride CaBiO2Cl under visible light irradiation. CrystEngComm 2012, 14, 6257. <http://dx.doi.org/10.1039/c2ce25672j>
  • Bai Shuli, Li Huanying, Guan Yujiang, Jiang Shengtao: The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Applied Surface Science 2011, 257, 6406. <http://dx.doi.org/10.1016/j.apsusc.2011.02.007>
  • Xia Hai-Long, Liu Feng, Ardo Shane, Sarjeant Amy A. Narducci, Meyer Gerald J.: Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. J Photochem Photobiol A Chem 2010, 216, 94. <http://dx.doi.org/10.1016/j.jphotochem.2010.06.035>
  • Varghese Oomman K., Grimes Craig A.: Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Solar Energy Mater Solar Cells 2008, 92, 374. <http://dx.doi.org/10.1016/j.solmat.2007.11.006>
  • Morris Amanda J., Meyer Gerald J.: TiO2 Surface Functionalization to Control the Density of States. J. Phys. Chem. C 2008, 112, 18224. <http://dx.doi.org/10.1021/jp801338y>
  • Stromberg Jonathan R., Marton Andras, Kee Hooi Ling, Kirmaier Christine, Diers James R., Muthiah Chinnasamy, Taniguchi Masahiko, Lindsey Jonathan S., Bocian David F., Meyer Gerald J., Holten Dewey: Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. J. Phys. Chem. C 2007, 111, 15464. <http://dx.doi.org/10.1021/jp0749928>
  • Raut B.T, Deshmukh L.P, Patil V.B, Shahane G.S, Sutrave D.S: Photovoltaic properties of n-CdS1−xTex thin film/polysulphide photoelectrochemical solar cells prepared by chemical bath deposition. This Solid Films 2004, 446, 1. <http://dx.doi.org/10.1016/S0040-6090(03)01106-4>
  • Badawy Waheed A.: Improved n-Si/oxide junctions for environmentally safe solar energy conversion. Solar Energy Mater Solar Cells 2002, 71, 281. <http://dx.doi.org/10.1016/S0927-0248(01)00087-3>
  • Boroda Yuri G., Voth Gregory A.: A theory for electron transfer between an electrode and a multilevel acceptor/donor species in an electrolyte solution. Journal of Electroanalytical Chemistry 1998, 450, 95. <http://dx.doi.org/10.1016/S0022-0728(97)00620-7>
  • Boroda Yuri G., Calhoun August, Voth Gregory A.: A theory for electron transfer across the electrode/electrolyte interface involving more than one redox ion. J Chem Phys 1997, 107, 8940. <http://dx.doi.org/10.1063/1.475186>
  • Boroda Yuri G., Voth Gregory A.: A theory for adiabatic electron transfer processes across the semiconductor/electrolyte interface. J Chem Phys 1996, 104, 6168. <http://dx.doi.org/10.1063/1.471274>
  • Bahnemann Detlef W.: Ultrasmall Metal Oxide Particles: Preparation, Photophysical Characterization, and Photocatalytic Properties. Isr. J. Chem. 1993, 33, 115. <http://dx.doi.org/10.1002/ijch.199300017>
  • Sampath S., Narayan R.: Electrochemical and photoelectrochemical reduction of oxygen at semiconductor electrodes in molten amides. Journal of Electroanalytical Chemistry 1992, 333, 273. <http://dx.doi.org/10.1016/0022-0728(92)80396-L>
  • Subba Rao G V: Recent trends in photoelectrochemical cells. Bull Mater Sci 1988, 10, 283. <http://dx.doi.org/10.1007/BF02744299>
  • Schuhmann Wolfgang, Josel Hans-Peter, Parlar Harun: Ein neues photosyntheseanaloges System zur lichtinduzierten Reduktion von Wasser zu molekularem Wasserstoff. Angew Chem 1987, 99, 264. <http://dx.doi.org/10.1002/ange.19870990326>
  • KAZEMINY MUHAMMAD, ORAZEM MARK E.: THE INFLUENCE OF ELECTROLYTIC MASS TRANSFER ON THE PERFORMANCE OF PHOTOELECTROCHEMICAL CELLS. Chem Eng Com 1987, 57, 335. <http://dx.doi.org/10.1080/00986448708960495>
  • Paranthaman M., Aruchamy A., Aravamudan G., Rao G.V.Subba: Photoelectrochehical studies on the mixed oxides,SrTiO3,Sr2TiO4 and Sr3Ti2O7. Material Chemistry and Physics 1986, 14, 349. <http://dx.doi.org/10.1016/0254-0584(86)90070-2>
  • Hubesch Bruno, Mahieu Bernard: Conversion of dextrose into hydrogen using aqueous tris(2,2′-bipyridine)rhodium(III) complex as a photocatalyst and enhanced by efficient heterogeneo. J Polyhedron 1985, 4, 669. <http://dx.doi.org/10.1016/S0277-5387(00)86681-4>
  • Willig F., Bitterling K., Charlé K.-P., Decker F.: Fast Photocurrent Transients in Photoelectrochemical Cells with Semiconductor and Insulator Electrodes. Berichte der Bunsengesellschaft für physikalische Chemie 1984, 88, 374. <http://dx.doi.org/10.1002/bbpc.19840880412>
  • Lokhande C.D., Pawar S.H.: Electrochemical photovoltaic cells for solar energy conversion. Material Chemistry and Physics 1984, 11, 201. <http://dx.doi.org/10.1016/0254-0584(84)90061-0>
  • Borgarello Enrico, Pelizzetti Ezio: Dioxygen evolution from inorganic systems. Reactions and catalytic properties of loaded TiO2 particles in photochemical dioxygen generation. Inorg Chim Ada 1984, 91, 295. <http://dx.doi.org/10.1016/S0020-1693(00)81852-6>
  • Ravindranathan Thampi K., Varahala Reddy T., Ramakrishnan V., Kuriacose J.C.: Mechanism of photoelectrocatalytic dehydrogenation of 2-propanol on a polycrystalline ZnO photoelectrode. Electrochimica Acta 1983, 28, 1869. <http://dx.doi.org/10.1016/0013-4686(83)87028-5>
  • Bolton James R.: Solar cells—A technology assessment. Journal of Solar Energy 1983, 31, 483. <http://dx.doi.org/10.1016/0038-092X(83)90052-X>
  • Schreiber B., Goyal R.N., Nguyen N.T., Dryhurst Glenn, Miller Maria, Czochralska Barbara, Shugar David: 484���Photosensitive lipid membranes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1982, 141, 265. <http://dx.doi.org/10.1016/0022-0728(82)85213-3>
  • Känel H.v., Hauger R., Wachter P.: Photoelectrochemistry of monoclinic ZnP2: A promising new solar cell material. Solid Stat Comm 1982, 43, 619. <http://dx.doi.org/10.1016/0038-1098(82)90476-8>
  • Schreiber B., Goyal R.N., Nguyen N.T., Dryhurst Glenn, Miller Maria, Czochralska Barbara, Shugar David: Photosensitive lipid membranes. Bioelectrochemistry and Bioenergetics 1982, 9, 265. <http://dx.doi.org/10.1016/0302-4598(82)80016-0>
  • Hubesch B., Mahieu B.: Photoinduced catalytic decomposition of water and tertiary amines or carbohydrates. Inorg Chim Ada 1982, 65, L65. <http://dx.doi.org/10.1016/S0020-1693(00)93496-0>
  • Neumann-Spallart M., Kalyanasundaram K.: Photoelectrochemical Cells with Polycrystalline Cadmium Sulfide as Photoanodes. Berichte der Bunsengesellschaft für physikalische Chemie 1981, 85, 1112. <http://dx.doi.org/10.1002/bbpc.19810851206>
  • Kiwi J.: Electron injection studies on semiconductor surfaces active in water splitting processes. chem phys letts 1981, 83, 594. <http://dx.doi.org/10.1016/0009-2614(81)85530-3>