CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1970, Vol. 24, No. 1, pp. 13-30

http://dx.doi.org/10.1351/pac197024010013

Water and aqueous solutions at high pressures and temperatures

E. U. Franck

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Yamauchi Kazuchika, Phaiboonsilpa Natthanon, Kawamoto Haruo, Saka Shiro: Characterization of lignin-derived products from Japanese beech wood as treated by two-step semi-flow hot-compressed water. J Wood Sci 2013, 59, 149. <http://dx.doi.org/10.1007/s10086-012-1313-3>
  • Liu Weihua, Migdisov Artas, Williams-Jones Anthony: The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV–Visible spectroscopic experiments. Geochimica et Cosmochimica Acta 2012, 94, 276. <http://dx.doi.org/10.1016/j.gca.2012.04.055>
  • Sonae Satoru, Ara Masato, Tada Hirokazu: Hydrothermal Synthesis of Silicon-Based Hollow Nanostructures. Jpn. J. Appl. Phys. 2012, 51, 06FG06. <http://dx.doi.org/10.7567/JJAP.51.06FG06>
  • Yui Kazuko, Uchida Hiroshi, Itatani Kiyoshi, Koda Seiichiro: Raman OH stretching frequency shifts in supercritical water and in O2- and acetone-aqueous solutions near the water critical point. chem phys letts 2009, 477, 85. <http://dx.doi.org/10.1016/j.cplett.2009.06.061>
  • Rodríguez A., Ovejero G., Romero M.D., Díaz C., Barreiro M., García J.: Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers. J Sup Fluids 2008, 46, 163. <http://dx.doi.org/10.1016/j.supflu.2008.04.007>
  • Minami Eiji, Saka Shiro: Decomposition behavior of woody biomass in water-added supercritical methanol. J Wood Sci 2005, 51, 395. <http://dx.doi.org/10.1007/s10086-004-0670-y>
  • SAKA Shiro, EHARA Katsunobu, MINAMI Eiji: Efficient Utilization of Woody Biomass with Supercritical Fluid Technologies. Journal of the Japan Wood Research Society 2005, 51, 207. <http://dx.doi.org/10.2488/jwrs.51.207>
  • Kronholm Juhani, Kettunen Johannes, Hartonen Kari, Riekkola Marja-Liisa: Pressurised hot water extraction ofn-alkanes and polyaromatic hydrocarbons in soil and sediment from the oil shale industry district in estonia. J Soils Sediments 2004, 4, 107. <http://dx.doi.org/10.1007/BF02991054>
  • Frayret C., Botella Ph., Jaszay Th., Delville M. H.: Titanium Dissolution-Passivation in Highly Chloridic and Oxygenated Aqueous Solutions. J Electrochem Soc 2004, 151, B543. <http://dx.doi.org/10.1149/1.1787171>
  • Delville M.H, Botella Ph, Jaszay Th, Frayret J.P: Electrochemical study of corrosion in aqueous high pressure, high temperature media and measurements of materials corrosion rates: applications to the hydrothermal treatments of organic wastes by SCWO. J Sup Fluids 2003, 26, 169. <http://dx.doi.org/10.1016/S0896-8446(02)00152-3>
  • Botella Ph, Cansell F, Jaszay Th, Frayret J.P, Delville M.H: Experimental set-up for electrochemical measurements in hydrothermal sub- and supercritical oxidation: polarization curves, determination of corrosion rates and evaluation of the degradability of reactors during hydrothermal treatments of aqueous wastes. J Sup Fluids 2003, 26, 157. <http://dx.doi.org/10.1016/S0896-8446(02)00153-5>
  • Kronholm Juhani, Kuosmanen Teemu, Hartonen Kari, Riekkola Marja-Liisa: Destruction of PAHs from soil by using pressurized hot water extraction coupled with supercritical water oxidation. Waste Manage (Oxford) 2003, 23, 253. <http://dx.doi.org/10.1016/S0956-053X(02)00045-4>
  • Ehara Katsunobu, Saka Shiro, Kawamoto Haruo: Characterization of the lignin-derived products from wood as treated in supercritical water. J Wood Sci 2002, 48, 320. <http://dx.doi.org/10.1007/BF00831354>
  • Kronholm Juhani, Kalpala Jarno, Hartonen Kari, Riekkola Marja-Liisa: Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs. J Sup Fluids 2002, 23, 123. <http://dx.doi.org/10.1016/S0896-8446(02)00008-6>
  • NAGASE Yoshiyuki: Supercritical Fluid Techniques in the 21st Century. Chemical Recycling for Waste using Supercritical Water. The Review of High Pressure Science and Technology 2002, 12, 217. <http://dx.doi.org/10.4131/jshpreview.12.217>
  • Misch Barbara, Firus Ariane, Brunner Gerd: An alternative method of oxidizing aqueous waste in supercritical water: oxygen supply by means of electrolysis. J Sup Fluids 2000, 17, 227. <http://dx.doi.org/10.1016/S0896-8446(99)00057-1>
  • Kritzer P., Boukis N., Dinjus E.: Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes. J Sup Fluids 1999, 15, 205. <http://dx.doi.org/10.1016/S0896-8446(99)00009-1>
  • Ikushima Yutaka, Hatakeda Kiyotaka, Saito Norio, Arai Masahiko: An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point. J Chem Phys 1998, 108, 5855. <http://dx.doi.org/10.1063/1.475996>
  • Sheldrick William S., Wachhold Michael: Solvatothermale Synthese von Chalkogenidometallaten. Angew Chem 1997, 109, 214. <http://dx.doi.org/10.1002/ange.19971090305>
  • Xu Chang-Fang: The origin of the crustal conductive layer and the conductivity of supercritical brine (II). Acta Seimol Sin 1996, 9, 455. <http://dx.doi.org/10.1007/BF02650981>
  • Richard Holgate H., Tester Jefferson W.: Fundamental Kinetics and Mechanisms of Hydrogen Oxidation in Supercritical Water. Combust Sci Techn 1993, 88, 369. <http://dx.doi.org/10.1080/00102209308947245>
  • Dell'orco P. C., Li L., Gloyna E. F.: The Separation of Particulates from Supercritical Water Oxidation Processes. SEPARAT SCI 1993, 28, 625. <http://dx.doi.org/10.1080/01496399308019511>
  • Xu Xiaodong, Almeida Carlos De, Antal Michael J.: Mechanism and kinetics of the acid-catalyzed dehydration of ethanol in supercritical water. J Sup Fluids 1990, 3, 228. <http://dx.doi.org/10.1016/0896-8446(90)90027-J>
  • Staszak Carl N., Malinowski Kenneth C., Killilea William R.: The pilot-scale demonstration of the MODAR oxidation process for the destruction of hazardous organic waste materials. Environ Prog 1987, 6, 39. <http://dx.doi.org/10.1002/ep.670060122>
  • Mok William, Antal Michael Jerry, Ramayya Sundaresh, Brittain Andrew, DeAlmeida Carlos: Acid-catalysed dehydration of alcohols in supercritical water. Fuel Lond 1987, 66, 1364. <http://dx.doi.org/10.1016/0016-2361(87)90183-9>
  • Gehrig M., Lentz H., Franck E. U.: The System Water-Carbon Dioxide-Sodium Chloride to 773 K and 300 MPa. Berichte der Bunsengesellschaft für physikalische Chemie 1986, 90, 525. <http://dx.doi.org/10.1002/bbpc.19860900606>
  • Rabenau Albrecht: Die Rolle der Hydrothermalsynthese in der präparativen Chemie. Angew Chem 1985, 97, 1017. <http://dx.doi.org/10.1002/ange.19850971205>
  • Rabenau Albrecht: The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew Chem Int Ed Engl 1985, 24, 1026. <http://dx.doi.org/10.1002/anie.198510261>
  • Ganeyev I. G.: A PHYSICOCHEMICAL MODEL OF THE TRANSPORT OF MINERAL MATERIAL BY HYDROTHERMAL SOLUTIONS. Int Geol Rev 1985, 27, 129. <http://dx.doi.org/10.1080/00206818509466398>
  • Groves Frank R., Brady Basil, Knopf F. Carl, Johnson Keith P.: State‐of‐the‐art on the supercritical extraction of organics from hazardous wastes. Critical Reviews in Environmental Control 1985, 15, 237. <http://dx.doi.org/10.1080/10643388509381733>
  • Gehrig M., Lentz H., Franck E. U.: Concentrated Aqueous Sodium Chloride Solutions from 200 to 600°C and to 3000 bar. - Phase Equilibria and PVT-Data. Berichte der Bunsengesellschaft für physikalische Chemie 1983, 87, 597. <http://dx.doi.org/10.1002/bbpc.19830870712>
  • Tödheide K.: Hydrothermal Solutions. Berichte der Bunsengesellschaft für physikalische Chemie 1982, 86, 1005. <http://dx.doi.org/10.1002/bbpc.198200007>
  • Buback M.: Spectroscopic investigations of fluids. Physics and Chemistry of the Earth 1981, 13-14, 345. <http://dx.doi.org/10.1016/0079-1946(81)90017-3>
  • Joubert J.C., Chenavas J.: New compounds from high pressure. J Solid State Chem 1979, 27, 29. <http://dx.doi.org/10.1016/0022-4596(79)90142-7>
  • Hagler Arnold T., Scheraga Harold A., Némethy George: CURRENT STATUS OF THE WATER-STRUCTURE PROBLEM; APPLICATION TO PROTEINS. Ann N Y Acad Sci 1973, 204, 51. <http://dx.doi.org/10.1111/j.1749-6632.1973.tb30771.x>