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ABSTRACT
In this paper we set out to review experimental values and theoretical estimates
of the Young's modulus of crystalline and amorphous polymers. Not unnatur-
ally, this reveals a lack of complete numerical agreement. The disparity is
worst for the transverse directions to the fibre axis when calculated theoretically.
Nor is there complete agreement between experimental determinations of the
moduli made by different experimental techniques. Nevertheless, an interesting
and reasonably satisfactory picture emerges from which can be seen those areas
which are most in need of further research.

After outlining the problem in general, we give an account of the various
methods available for obtaining the Young's modulus of polymers along the
chain and at right angles to the chain. These consist of macroscopic stretching
methods, the use of sound waves, x-ray diffraction, Raman scattering and in-
elastic neutron scattering spectroscopy. The relative significance of static and
dynamic measurements is also discussed.

An account is given of experimentally determined values of E11, the modulus
along the chain, and in the next section these values are compared with theoreti-
cal estimates. It turns out that most work has been done with polyethylene,
where major discrepancies can be seen between the experimental and theoretical
values. However, other polymers have received a fair amount of attention.

Experimentally determined values of E are next discussed, and are com-
pared with theoretical estimates. The situation here is confused, but largely
because E1 has received less attention than E11. Finally the problem of isotropic
amorphous and crystalline polymers is considered. This is the most complicated,
and technologically the most important. Some progress has been made in
estimating theoretically Young's modulus from consideration of molecular

stretching mechanisms, but basically the subject is still in its infancy.

1. INTRODUCTION
In virtually all applications of polymers, we are interested in one or more

of three basic mechanical properties—stiffness, strength and toughness.
Stiffness represents resistance to deformation, strength represents the ulti-
mate load of stress which a material can withstand before it fails by fracture
or excessive deformation, and toughness represents the work required to
fracture a material. Of these three properties, stiffness is perhaps the most
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basic, since there is a broad relationship between stiffness and strength in
the ideal case. For example, as Vincent1 has pointed out, one cannot expect
to reach the theoretical strength before reaching the theoretical modulus. It
is with the elastic modulus or stiffness that we are concerned in this paper.
As a measure of stiffness, we shall use Young's modulus defined in the usual
way

E = o•/c

where E is Young's modulus, o• is stress, and c denotes strain. This equation
is valid for small strains, say less than one per cent. Since E is dependent
upon the rate of strain, we shall define E as the limiting value, as the rate
of strain tends to zero. Unless otherwise specified, we restrict ourselves
to this limiting, or static, value.

Isotropic polymers have a single value of E and in this case the well-
known relationship between the four elastic constants E (Young's modulus),
G (shear modulus), K (bulk modulus) and v (Poisson's ratio) apply.

E = 3G/(1 + G/3K) (1)

G = E/2(1 + v) (2)

K=E/3(1 —2v) (3)

For anisotropic polymers, there are more elastic constants, depending
on the direction of test. For example, for uniaxially aligned chains, with
which this paper is mainly concerned, there are at least two values of E;
E11 and E1, these being the values of E parallel and perpendicular to the chain
direction. In materials of greater anisotropy, a fuller description of the
stress/strain relationship is required2' 3 For crystalline polymers, moduli
can sometimes be obtained parallel to three or more crystallographic direc-
tions. The best known example of this is linear polyethylene, discussed
below. These moduli are indicated by the symbol Ehkl ,where hkl are the
Miller indices of the plane perpendicular to the direction of modulus
measurement. Alternatively for orthorhombic polyethylene the symbols
Ea, Eb and E are used, E being the modulus in the chain direction.

Values of elastic modulus will be given in multiples of 1010 dyne cm 2,
which is the most convenient for comparison purposes. The relationships
given by equations 4,5 and 6 convert dyne cm2 to other units:

S.I. 1 Newton metre2 = 1 Nm2 = 10 dyne cm 2 (4)
Practical 1 Kgcm2 = 106dyne cm2 . (5)

1 lb in2 = 6,85 x iO dyne cm2 (6)
In this paper we discuss first the various methods which have been used to
measure the modulus in the chain direction and transverse to the chain. In
the case of a fibre for example, the modulus in the chain direction should not
be confused with the overall modulus along the fibre axis. It is the modulus
within the crystalline regions in the fibre, determined in the direction of
chain alignment and is therefore higher than the fibre modulus. It will be
seen that there is a lack of agreement between values of modulus deter-
mined by different experimental methods. The values of the modulus
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obtained macroscopically (e.g. with a tensile testing machine) differ from
those obtained microscopically (e.g. by the shift in x-ray diffraction peaks
under load or by inelastic neutron scattering spectroscopy, abbreviated to
INSS).

We discuss secondly the way in which the experimentally determined
values compare with a range of theoretical calculations, based on an assess-
ment of the intra- and inter-molecular forces. There is a disparity between
values in both cases—both in the crystallographic directions along the
fibre axis and perpendicular to it. The discrepancy between theory and prac-
tice in the case of the transverse moduli reflects the position in other molecular
crystals, where a knowledge of intermolecular forces and their range is
fairly meagre.

Finally, we deal with the elastic modulus in isotropic, polycrystalline
or amorphous polymers and how this may be estimated according to various
models, from the longitudinal and transverse moduli obtained on crystalline
polymers.

2. EXPERIMENTAL METHODS OF OBTAINING ELASTIC
MODULI

The chief methods of measuring the elastic constants of crystals, and hence
their elastic moduli, are by macroscopic stretching, sound velocity measure-
ments, measurements of the shift in x-ray reflections under an applied stress,
Raman scattering spectra and by INSS. An important aspect of these differ-
ent methods is that they give data on the crystal elasticity at different levels
of scrutiny. By this, we mean that the size of the deformation observed is
progressively lower in passing from method to method, so that the prøperty
of crystalline regions only is ultimately measured. For most pure single
crystals of uniform texture it is to be expected that the measurements of
elastic constants for a crystal will be independent of which of the above
methods has been chosen and this seems to be true for single crystals of
argon, for example4' . For polymers, one may expect revealing differences
from measurements made by the several methods because of their mosaic
texture and because the dynamic studies (sound wave and phonon measure-
ments) may be restricted to studying either isothermal or adiabatic sound
propagation6. It is normally observed in polymer physics that Young's
modulus measured by a dynamic method is greater than the corresponding
static value, i.e. Edfl > Whilst this is true for polycrystalline materials
which are normally studied, it need not be true for single crystals or measure-
ments which are restricted to single crystal regions. There are circumstances
where Edyfl = and this point will be discussed later, since otherwise
it may give rise to confusion.

We shall now discuss briefly the various techniques for determining E,
with comments on the way in -which a particular technique can bias results.

Macroscopic stretching method
This method requires little discussion, since it is so well known. The

exact size and form of the test material is a matter of convenience and film,
strip or fibre may be used. If an anisotropic material is required, it will be
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oriented and stabilized in the usual way (see, e.g., ref. 2). If an isotropic
sample is required, care must be taken not to stretch or otherwise orient the
material inadvertently during sample preparation. Strain rates are low. BUlk
measurements of this kind are of intrinsic interest for the application of
polymers in industry, but what is noteworthy is that the values obtained for
the Young's modulus are usUally an order of magnitude lower than those
calculated or obtained by more 'microscopic' measurements. The com-
parison of microscopic and macroscopic measurements permits the evalua-
tion of aggregate theories for the calculation of bulk polymer properties
(see, e.g., ref. 7).

Sound wave measurements
The transverse modulus for polypropylene determined from sound

velocity studies is reported at 4.04 x 1010 dyne cm2 8 This may be. com-
pared with the bulk measurements of 2.3 x 1010 dyne cm2 and the x-ray
value of approximately 3.0 x 1010 dyne cm2 at 28°C. There are only a
few measurements of this kind for polymers although the method has been
extensively applied to molecular crystals, and recently to inert gas atomic
crystals3.

The technique is in principle quite simple, and one modification consists
in measuring the transit time, around (10 j.ts), for 10 MHz ultrasonic power
in a narrow pulse to travel from the transducer through the substrate and
return. Quartz transducers may be used for this work and must be strongly
bonded into the samples. The pulses and their time separation may be
simply observed using an oscilloscope. Since quite small transducers may
be obtained, the elastic constants in different crystalline directions can be
readily measured. Difficulties arise in practice because of faulty bonding
between the crystal and the transducer and through specimen attenuation.
The crystal size must be measured in the transmission direction.

For a non-homogeneous sample with many disordered crystalline blocks,
as in many polymer specimens, considerable difficulties can be anticipated
due to reflections from grain boundaries. The spatial range of the measure-
ment is such that the sound velocity obtained is more characteristic of the
polycrystalline average than of a true crystallite direction. The relations
between single crystal and polycrystalline velocities have been discussed by
Hill9. It is conceivable that for highly crystalline, highly oriented samples,
many interesting data could be obtained by this method.

X-Ray determinations of crystalline elastic moduli
This method, largely developed by Sakurada and his colleagues10, depends

on observing the shift under a static stress of the characteristic x-ray diffrac-
tion spots associated with periodic structures in the polymer. These shifts
were noted by Baker and Fuller ' in 1943, although they did not calculate
elastic moduli. This was first done by Dulmage and Contois12 who measured
the extension of the fibre identity period (FIP) for eight polyesters and
polyesteramides.

A full description of the experimental arrangements necessary to do the
measurements has been in the context of measurements on poly-
vinyl alcohol, polyethylene, polypropylene, polyoxymethylene, cellulose
and polyvinylidene chloride. The specimens were highly oriented filaments or
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fibres prepared by dry spinning or extrusion. They were stretched under
constant load in a special sample jig fitted to the x-ray camera, as shown in
Figures 1 and 2. The specimen length was Ca. 35mm and the specimen

—-To scaler

Figure 1. The x-ray diffractometer with stretching mechanism: (X) x-ray tube; (I) Geiger—Muller
counter; (S1), (2) slit system; (C) specimen; (T) stretching clamps; (P) pulley; (W) weight;

(G) goniometer; (R) specimen rotor [After Sakurada, Nukushina and Ito13].

Figure 2. Stretching mechanism: (1) clamps; (2) fibre specimen; (3) rule; (4)
(6) screw hole [After Sakurada, Nukushina and Ito'3].

Vernier; (5) slide;

extension could be read to 0.03 mm. Usually a meridional reflection was
chosen and experimental error in measuring the shift of its maximum
intensity was approximately ± 1 minute of arc. This corresponds to 2.5 x
io Angstroms so that the lattice extension could be measured by approxi-
mately 0.02 per cent
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The stress, a, may be calculated from the weight applied to the specimen
(at constant load) and calculated cross-sectional area of the specimen (the
latter corrected for elongation). The elastic modulus is calculated from the
expression:

cr—_Er (7)

given that
= (Ad/d0) (8)

where d0 is the distance between planes before applying the stress and Ad
is the change in distance under stress.

It can be seen that this method is one of the most accurate available for
measuring the elastic moduli of the crystalline regions in polymers. Intrinsic
accuracy is limited only by the practical ability to measure the shift in
diffraction maximum and by the method of calculating the stress applied
to the crystalline element. Here it is necessary to make the assumption of a
series model for applying the external forces to the crystalline polymer
segments. This assumption of homogeneous stress is a possible weakness of
the method, and much effort has been devoted to establishing its validy
One method of check has been to try to show that the elastic modulus in the
chain direction is the same when measured by this method for different
samples of the same material14. For example, for polyethylene different
samples gave a lattice modulus measured by x-rays of 240, 240, 230 x 1010
dyne cm -2, the bulk specimen moduli for the same materials being 2.4, 15,
3.1 x 1010 dyne cm 2 In another example, the lattice modulus of polyvinyl
alcohol measured in the dry and wet (swollen) states, was found to be the
same although the specimen (bulk) modulus changed by a factor of 100 under
this treatment. Later has tended to confirm this view of homogeneous
stress, since polymers with different fine textural structures have the same
lattice moduli. The data for these different materials all fall upon the same
stress/strain curve as determined by x-rays. These curves often have two
straight line regions (Figures 3, 4) which may indicate a different mode of
deformation at high extensions.

Figure 3. Stress/strain curve for polypropylene lattice [After Sakurada, Nukushina and Ito13].
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Figure 4. Stress/strain curve for polyoxymethylene lattice [After Sakurada, Nukushina and Ito' 3]

The overall moduli of the specimens are always found to be much lower
than the lattice moduli in the direction of the chain axis. This indicates
to what extent the moduli in the amorphous regions are lower than those
for the crystalline regions. Even in the chain direction, however, it is not clear
that all factors which could violate the assumption of homogeneous stress
have been discovered and eliminated.

In the transverse direction, the assumption of homogeneous stress is
even more a source of concern. This is partly because the moduli associated
with the interchain interactions (Ea and Eb for example in polyethylene) are
much more isotropic and are numerically closer to the values supposed for
moduli in the amorphous fraction. Since theoretical estimates for these
directions are still in disagreement, new methods of measuring the true
crystalline modulus are essential to further discussion. There is some evidence
that an assumption of homogeneous strain may be better for interpreting
x-ray data7 in the a direction.

Raman scattering measurements
When a monochromatic beam of light enters a colourless solid, liquid

or gas, a small fraction (say 1/1000 of the intensity is scattered by the mole-
cules. Energy analysis of the scattered light, with a monochromater, reveals
that most of the scattered intensity appears at the same energy as the incident
line (elastic or Rayleigh scattering). A small fraction appears at energies
differing from the incident line by quanta of molecular vibrational or
rotational energy. This is the inelastic or Raman scattering. As the energy
transfer can be easily measured with modern spectrographs, Raman scatter-
ing is a good method of measuring molecular vibration and rotation
frequencies subject to the limitations imposed by optical selection rules15
and by sampled turbidity and fluorescence. Laser sources have greatly
reduced the latter problems which are acute in polymer specimens. The
applications for polymer spectroscopy have been reviewed recently16' 17

To measure the elastic modulus of a hydrocarbon chain it is necessary to
identify the vibration frequencies of the 'accordion' like motion of the
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planar zig-zag chain. This motion is quantized and the lowest frequency
oscillation involves the two chain ends moving parallel to the axis with
maximum amplitude with the chain centre at rest. The wavelength of the
standing wave of this frequency is just twice the chain length (2L) since the
two ends are moving 180° out of phase. Higher modes of vibration charac-

___________________ m=2
A =L

terized by more modes along the chain and mode numbers m —2, 3... may
occur as shown above. The highest frequency occurs when neighbouring
atoms are moving 1800 out of phase. By knowing the frequency Vm of these
waves (from the Raman) and their wavelength, 2m' the velocity of sound,
v, is calculated, V = VmAm. Using the relationship

= (E/p) (9)

where E is Young's modulus and p the chain density, the modulus can be
calculated.

In 1949 an estimate of the elastic modulus of polyethylene was made using
this method by Mizushima and Shimanouchi41, who observed the lowest
frequency Raman active chain vibrations of a number of alkanes. They used
the assumption implicit above that the hydrocarbon molecule could be
treated as a uniform elastic rod, giving the following relationship for E11

E11 = {(2L/m)v}2p (10)

Having observed only the frequency for m = 1 they used chains of different
length, L, to verify the relation and obtained a value for E11 of 340 x 1010
dyne cm2 It is fortunate that the argon ion laser has made it possible to
extend this Raman work by revealing more of the longitudinal modes, Vm,
of vibration for hydrocarbon molecules. Using this device, Shauffele and
Shimanouchi42 obtained a recent estimate of the elastic modulus of an
infinite polyethylene chain as 358 ± 25 x 1010 dyne cm2. A simplified
view of the connection of these modulus measurements with those of inelastic
neutron scattering spectroscopy has recently been given43 by White.

Figure 5 shows the Raman spectrum from solid C36H74 at 300°K. The
Rayleigh line appears with great intensity at energy transfer hc M = 0;
(h is Planck's constant, c the velocity of light). The laser excitation is par-
ticularly valuable here because of the narrow width of the exciting line. The
sharp peaks separated by 67.4, 189, 303 etc., cm', from A = 0 correspond
to values of m = 1, 3, 5 etc. for the chain longitudinal acoustic 'accordion'
mode. Bands for even m ate excluded because of optical selection rules and
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Figure 5. Raman scattering by crystalline C36H74(300°K) [After Shauffele and Shimanouchi42].

the frequencies observed above 1000 cm' are localized intramolecular
deformations, some possibly showing the effects of dispersion in their
shapes.

Shauffele and Shimanouchi42 showed that the frequencies for a large
number of hydrocarbons and mode numbers all fit on to the same curve
(Figure 6). This diagram has several important consequences. The abscissa,
rn/n, measures the phase shift between the amplitudes of neighbouring atoms
and is inversely proportional to the 'wavelength' of the mode, m. The figure
is thus a dispersion curve43 relating frequency and wavevector in the mode.

It can be seen that for long waves (rn/n small) the approximation of a
uniform elastic rod is good. The slope gives the velocity of sound and hence
the elastic modulus. The deviations at higher frequency (for shorter waves)
are very similar to the dispersion phenomena found for lattice vibrations18

That points for many different hydrocarbons fit the same curve illustrates
the validity of transferring the force field from one to another and, as an
ultimate extension, to polyethylene. Because the chain lengths in polymer
segments are long and because of their spread of values it may be difficult
to observe the longitudinal Raman modes like Figure 5 directly. One report
of this has been made'5 which indicates extensive and reproducible chain
folding. Shauffele and Shimanouchi predict that the separation of lines for
m = 1,3 etc., should be Ca. 102 cm 1 for polyethylene.

Inelastic neutron scattering measurements
Raman scattering spectroscopy measurements of the paraffin chain

modulus were made possible because both the wavelength and frequency
of the chain vibrational mode were known or came from spectra. Inelastic
neutron scattering spectroscopy, INSS, also has this feature and in addition
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Figure6. Low-frequency Raman bands plotted as a function of rn/n and their assignments n-rn.
(——— shows theoretical line for a uniform elastic rod [After Shauffele and Shimanouchi42].

the remarkable ability to selectively measure modes of prechosen frequency
and wavevector (h/)Lm) in a chosen crystallographic direction. Dispersion
curves, and hence the elastic constants, have been measured revealing the
subtleties of the distance dependence of force laws in single crystals of
metals, ionic salts, semiconductors and most recently molecular crystals1 8—20
This type of information is potentially accessible for polymers but the chief
difficulty, until recently, has been to find neUtron methods applicable to
materials with such poor crystalline mosaic spreads as polymers have,
even when oriented.

INSS'8 has made, and will make, important contributions to the study of
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polymer motions by revealing the phonon density of states spectrum of the
chain and lattice vibrations21'22 for comparison with theory and specific
heats22. It has also identified other optically forbidden modes in polymers.
Methyl torsion vibrations23 appear particularly strongly and other side
group motions may be equally tractable.

For determining the nature of the polymer binding forces, in and per-
pendicular to the chains coherent inelastic neutron scattering must play a
dominant role. A simple sketch of the method and its relation to other
spectroscopy has been given43. We will concentrate here on the two methods
which have so far successfully determined the elastic moduli parallel and
perpendicular to the chain in polyethylene and polytetrafluorethylene. The
wider question of the shape of the dispersion curves and the range of the
forces causing the modulus will be treated elsewhere24'25 with more details
of the experimental method suitable for polycrystals.

Theory of the neutron method
The neutron is uncharged and interacts with matter quite differently from

light or charged particles. Secondly because neutrons are massive there are
appreciable transfers of momentum as well as energy when excitation 'by
neutrons occurs. For polymers the first point allows excitation of optically
forbidden molecular transitions and the second makes it possible to observe
lattice vibrations whose 'momentum' or wavevector is both variable and
well away from the Brillouin zone centre as required for optical spectra.

As a result, molecular neutron scattering by contrast with the Raman
effect is often strongly angular dependent and the quantity of interest for
measurement is the double differential scattering cross section 2a/aQw
This measures the intensity of scattering into solid angle element I3Q for
energy charge h 3w where h = h/2it. For a highly monochromatic incident
beam this cross section represents the intensity of the scattered spectrum
and is given by 19,20

2a (2r) kcoh
Ti x x x (hw hj) x ö(Q R q — 2izv)

q,s 0

h(n + 4 + 4) exp {iQ . p,] x Q • UI2
X

2f
—

X
M x exp — [214') (11)

where V is the volume of the crystal and the first sum is over modes s of
wavevector q and frequency f The sum over reciprocal lattice vectors r
shows that the cross section is greatest near diffraction peaks and especially
when the vector condition in the delta function is satisfied. The final sum is
over atoms, mass M1, in the unit cell, distinguished by vectors, p1U' is the
polarization vector for the it/i atom's displacement in the mode s of wave-
vector q, and exp — [2W] is the Debye—Waller factor. Q is the momentum
transfer (see equation 13).

For a single scattering atom this general expression can be reduced to

_____ 2 k — (2it)3. h(n + 4 ± 4)= Ti x X 5(hw + hf) X X
2Mf

x exp i(Q q) (Pm — P] X F X (Q U)2 (12)
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where m' P,, are lattice vectors which distinguish different unit cells and F
is the unit cell structure factor35.

Chain axis measurements for polyethylene and polytetrafluorethylene
The most widely used method of coherent INSS for observing phonons

(quantized lattice vibrations) in perfect single crystals employs the 3-axis
spectrometer developed by B. N. Brockhouse (see ref. 20). The instrument
has two vertical axes to which are attached crystals for incident wavelength
selection (I) and scattered neutron wavelength (hence energy) analysis (III)
as well as one axis (II) for setting the orientation of the sample crystal to
any angle with respect to the monochromatic beam produced by the first
(wavelength selection) crystal and its subsequent collimator. Neutrons from
the final analysing crystal are detected and counted as a function of the
energy change on scattering very much as in Raman scattering experiments.
A simplified description of the operation of this instrument has been
given18' 43

The 3-axis arrangement gives great flexibility in experiments and in
particular allows selective excitation of longitudinal or transverse phonons
along any crystallographic direction through the combined operation of the
scalar product, (Q' U)2 and the structure factor terms

exp i[Q ± q] . [Pm — P]
in the cross section formula. The latter indicates that scattering will only be
strong near points m P in the lattice (i.e. near a Bragg peak) and the
former shows that modes with their polarization vector U along the momen-
tum transfer, Q willbe the most intense. The disadvantage of the method for
polymers arises because the small solid angles used to define the energy
and momentum resolution of the machine for perfect single crystal studies
lead to very small counting rates and counting rate to background ratios
for large mosaic spread materials. The problem hardly arises when single
crystals (e.g. of metals) are the sample since their scattering is sharply peaked
in angular and energy distribution.

Naturally, therefore the first applications of coherent INSS to polymers
studied polyethylene26 and poltetrafluorethylene27'28 where a high degree
of c axis alignment was produced by drawing and rolling. Deuterated
polyethylene was used for the first experiment since the coherent scattering
in hydrogen polyethylene is masked by the high incoherent cross section of
hydrogen. Fluorine and carbon nuclei are largely coherent scattering by
contrast.

For deuterated polyethylene, Feldkamp, Venkataraman and King
succeeded in observing phonons along the c axis using a 3-axis spectrometer.
These belong to the longitudinal acoustic, v5, mode of the same symmetry
as the 'accordion' mode seen by Raman spectra in shorter chains. The
frecuencies corresponding to wavelengths between Ca. 3 A (30 nM) and about
20 A (200 nM) were measured and plotted as a function of the inverse wave-
length (Figure 10) to give the dispersion curve (compare Figure 6 and ref.
43). The dispersion curve fits an isolated chain, nearest neighbour force
constant model quite well and the limiting slope at small reduced wave-
vectors (long wavelength vibrations) gives a Young's modulus of 329 x 1010
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dyne cm2 at approximately 20°C. Presumably this material was a high
density polyethylene but more data on its physical characteristics would be
valuable. No attempt was made to measure phonons perpendicular to the
chain because of the very poor orientation in these directions.

For polytetrafluorethylene, La Garde, Prask and Trevino28 used a variant
of the 3-axis technique where the neutron beam was chopped and energy
analysis performed by time-of-flight measurements. Again the c axis (chain
axis direction) was studied because a relatively high orientation could be
produced by wrapping an extruded fibre around a steel frame. The sample
had a 'rocking curve' of 9° full width at half maximum. Many phonons were
observed in the first half of the Brillouin zone corresponding approximately
to the carbon—carbon repeat distance. Again they fit well on to the dispersion
curve predicted by using an isolated chain, sixteen parameter valence force
field28 with nine transferred and seven adjustable parameters. The weakness
of interchain interaction is also apparent from the lack of space group splitting
in the infra-red and Raman spectra.

This measurement gives a c axis modulus for the 15/7 helix at 25°C of
222 x 1010 dyne cm2 which is rather larger than the x-ray [0015] planes
and calculated moduli (156 and 163 x 1010 dyne cm2 respectively). This
particular disagreement is analogous to that in polyethylene.

Measurements of the modulus perpendicular to the chain for polycrystalline
materials

Various combinations of rolling and drawing produce orientation of the
a and b axes of polyethylene29. However, in these directions the best oriented
specimens still have diffraction 'rocking cUrves' whose widths at half height
are more than 15° and so present 3-axis neutron techniques are rather
unsuitable for phonon measurements. Time-of-flight instruments, normally
dedicated to incoherent scattering, have larger solid angles for incident and
scattered neutrons and may be adapted advantageously to gain intensity in
coherent scattering experiments from polymers24. Only a brief outline of
this technique will be given to show bow the method may be applied to
polycrystalline samples by exploiting the, often great, anisotropy in crystal-
line axes.

The experiments were done using the cold neutron time-of-flight spectro-
meters30'31 on the 4H5 and 6H holes of the DIDO reactor at the AERE,
Harwell, UK. Figure 7 shows a single chopper version of these instruments
diagrammatically, along with the neutron energy distributions at various
parts of the instrument. A full discussion of the techniques of time-of-flight
spectrometry has been given by Brugger32. Briefly, in the present apparatus
(4H5), thermal neutrons from the reactor core are moderated in a vessel
containing liquid hydrogen. The neutrons emerging from this moderator
have a Maxwell—Boltzmann distribution of velocities peaked around a tem-
perature of about 30°K. Fast neutrons and gamma rays are removed by
total internal reflection in the beryllium single crystal and by absorption in
a bismuth single crystal. The beam then passes on to a rotating chopper with
curved slots. At B, the high energy tail of the spectrum has been removed
and in the chopper a narrow energy band is selected near the maximum of the
distribution. For very high resolution work two choppers may be used or the
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chopper passband may be set close to the beryllium total internal reflection
cutoff wavelength. The rotating chopper not only selects a narrow band of
energies but it also pulses the neutron beam. This pulsed beam is useful
because the neutron energy for elastic and inelastic scattering may now be
measured directly by the time-of-flight from sample to detectors. The inten-
sity of the pulse incident upon the sample is measured by a monitor and
after scattering the neutrons are collected over one quadrant in six banks
of boron trifluoride counters.

Since the samples have been at room temperature, anti-Stokes scattering
is the dominant inelastic effect. The number of neutrons as a function of
their energy arriving at a given counter is shown in D in Figure 7 and it
can be seen that whilst most neutrons are scattered elastically a small group
has gained a fixed amount of energy from quantized motions in the solid.
Normally spectra are not presented with neutron intensity as a function of
neutron energy but rather as the directly measured neutron intensity versus
time-of-flight In these time-of-flight spectra the energy gain peak is naturally
on the LHS of the elastic peak. This will be so for the polyethylene spectra
below.

The great gain in scattered intensity with this time-of-flight instrument
comps from the large solid angle subtended by the collecting counters at
the sample. The counters are at a given scattering angle, 0 and are arranged
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Figure 7. Chopper time-of-flight spectrometer for incoherent neutron scattering. For the
experiments described the speed was adjusted so that 5.3 A neutrons were passed by the chopper.
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as closely as possible on a Debye—Sherrer circle with the beam as axis. Poly-
crystalline diffraction intensity is thus collected over an appreciable azimuthal
angle.

300
hi, .1 I

1000 100 20 0
Energy transfer, cm-1

=54o

\I
I I

300
I i,J

1000 100 20 0
Energy trQnsfer, cm-1

300
ILL' I Li

1000100 200
Energy transfer, cm—1

Figure 8 shows the neutron time-of-flight spectra from a high molecular
weight, high density, polycrystalline sample of deuteropolyethylene. The
sample had been studied extensively by x-ray29 and neutron crystallography
and was prepared by the method of Zeigler (see ref. 33).

The spectra were measured at nine angles of scattering to the incident
beam and show a qualitatively different angular dependence from Raman
scattering and incoherent neutron scattering spectra. One peak, in par-
ticular, can be seen to move to smaller energy transfers as the scattering
angle increases. For C = 18° the maximum is near 500 gis m'; at 0 = 36°
it is nearer 700 jis m1; atO 54° near 1000 us rn_i and by 0 = 63° it has
merged with the elastic peak. By contrast other peaks associated with the
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Figure 8. Neutron time-of-flight spectra for polycrystalline perdeuteropolyethylene, incident
wavelength 2 = 4.2 A.
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chain torsion etc. remain almost unchanged ir frequency at different angles.
From these much can be learned of the intramolecular force field but we
concentrate on the 'moving' peak whose behaviour is characteristic of a
phonon. We note that at about 0 = 63° the elastic scattering intensity is
greatly augmented by the presence of the intense 200 and 110 Bragg reflections
of polyethylene.

The behaviour of this peak can be understood using the theory of poly-
crystalline and liquid scattering proposed by Cocking and Guner34 and
remembering the considerable anisotropy of the orthorhombic polyethylene
crystalline unit cell (a = 7.40 A, b = 4.93 A, c = 2.534 A). First we need the
condition for elastic diffraction since intense coherent inelastic scattering
occurs in conjunction with intense diffraction peaks.

A neutron beam of wavevector, k0, impinging on a rigid solid will be
diffracted with momentum transfer Q if the vector condition (equation 13)
is satisfied35

k—k0=Q=2irr (13)

where is a reciprocal lattice vector and k is the outgoing wavevector of
the neutron. In a normal 20 scan this condition is fulfilled by various planes
in turn as the scattering angle between k and k0, and hence Q,increases. For
a polycrystal this is also true except that all possible orientations of crystal-
lites with respect to Qarepossible and diffraction will occur when

(14)

The Debye—Sherrer ring pattern is produced. By working with cold neutrons
(long wavelengths, small k0), JQ can be kept within the first strong structure
factor zone of an anisotropic crystal which means that diffraction may only
occur from the most widely separated planes of those crystals properly
oriented to the scattering plane of the apparatus. Since the static structure
factor enters strongly into the inelastic scattering intensity (equations
11, 12) an extension of the same method to observe phonons along chosen
crystal axes is possible. Clearly also the more crystallites have the correct
orientation—the stronger are all effects. So by operating at low Q through
the structure factor we have a method of choosing the crystalline axis to
which neutron excitation of phonons will be referred.

We must now control whether the excited phonon is of longitudinal or
transverse polarization. Figure 9 shows the vectorial condition for coherent
inelastic scattering The diagram must satisfy the joint constraints of
diffraction and energy transfer, namely

k—k0=Q=2irr+q (15)

Qiattice ± qh00

and

(h/2m)(k2 — k) = hWphonon (16)

where m is the neutron mass, hwPhOfl0fl the energy of the excited phonon and
Qiattice refers to that part of the momentum transfer associated with elastic
scattering only.
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1st sphere of reciprocal lattice

IQI—IqI <2rIrl <101+ II

/

Phonons in polycrystaLs

[o,o,o]

1+ lq I

Figure 9. Vector diagram and theoretical. spectrum for phonons in
[After Twisleton and White24].

an anisotropic polycrystal

If q is the wavevector of the phonon, Q,q and 2itr make up a triangle and
the permissible range of q is

QI — (17)

All phonons in this range will be observed. The broad band which moves
through the diagrams of Figure 8 is composed of many phonons of inter-
mediate polarization vectors. Of this group Figure 9 shows that three unique
points may be identified. At IQI = 2ir ± , i.e. with Q,2irr andq collinear
there are two cutoff points. These have great intensity and unique longi-
tudinal polarization because of the scalar product Q U2 in the cross
section formula. Furthermore because diffraction is simultaneously necessary
for the inelastic scattering we can be sure that the phonons are excited in
microcrystalline regions. There is also the diffraction maximum at 2ir tv
Q where transverse phonons are excited and which corresponds to a
crystalline lattice plane spacing.

In our experiments (Figure 8) only the 2ir — q cutoff is observed for
experimental reasons. This can be taken as the maximum of intensity in
our spectra and since both its frequency, Co. and wavevector, q, are determined
we can plot the dispersion curve. In deuteropolyethylene the a crystallo-
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graphic direction is longest and the observed phonon in Figure 8 is most
probably the longitudinal acoustic oscillation in this direction perpendicular
to the chains. The only ambiguity comes from the nearby [110] peak in
the structure factor, which may allow [110] phonons to be excited.

Figure 10 shows the a axis and c axis dispersion curves plotted as a function
of reduced wavevector (e.g. 2,t/a = 1). The great difference in slope near the
Brillouin zone centre is obvious and leads to sound velocities of 1.715 x 106
cm sec and 1.35 x io cm sec 1 for the two directions. Using a density of
p = 1.149 g cm3 from the crystal structure the moduli are E = 329 x 1010
dyne cm2, and Ea = 6 x 1010 dyne cm2. The curve for the phonon is
almost straight within the zone defined by —it/a <q <it/a, a possible
consequence of the almost hexagonal symmetry of this crystal The conse-
quences for the modulus of the great temperature sensitivity of this direction
are being investigated. The formal assignment of the phonon ,above, to the
a direction rather than [110] may be revised by current high resOlution
studies combined with dynamical structure factor analysis.

Figure 10. Dispersion curves for deuteropolyethylene along the a and c
directions [After Twisleton and White24].

1.0

EOOEJ

crystallographic

Relation between Estat. and EdYfl

The results above have shown that modulus measurements with spectro-
scopy generally give larger values than x-ray, sound wave or static tests and
it is a fair question to ask if these higher values are indeed the true values to
be aimed at or whether there is some systematic bias in the techniques.

The higher values suggest a correlation with past experience that high
frequency dynamic methods usually give higher moduli than static tests due
to relaxation phenomena in the polymer.

First it must be made clear that the spectroscopic measurements are con.-
fined, at present, to the microcystalline, crystalline regions and that the
effects of crystallite texture will be to produce boundary condition effects
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THE STIFFNESS OF POLYMERS IN RELATION TO THEIR STRUCTURE

on such quantities as phonon lifetime. Under these conditions a case can
be made for the correspondence of spectroscopic and static measurements.

In an extended isolated simple chain such as aplanar zig-zag, to which we
have seen the segments in polyethylene crystallites correspond quite well,
we might expect no dispersion of the sound velocity until the sound wave-
lengths approached the interatomic separations. Putting this slightly
differently, the chain should behave as a harmonic oscillator up to a harmonic
number corresponding to these short wavelengths. This means that over the
full range of atomic displacements produced by the harmonics, the potential
energy will be quadratic in the displacement and the wave frequency and
wavelength inversely proportional through the sound velocity. That Hooke's
law is so obeyed from the bottom of the potential well of the configuration
coordinate (accordion mode stretch) of alkanes can be seen from Figure 6
where for a large number of harmonics the simple relation is true.

In a static measurement the same configurational coordinate is changed
and the potential energy of the chain 'moves up' the same quadratic curve
that is explored by the vibrational spectrum. For such a situation Young's
modulus will be independent of the method.

For more complicated chain conformations or in a chain with side groups
additional dispersions in the sound velocity are to be expected. Here also the
caveat6 about type of sound propagation must be mentioned. This proviso
may also be important in some specimens of polyethylene for directions
perpendicular to the chain axis since phonons are not being excited in a
crystal of infinite extent. For our sample the mosaic blocks were large enough
not to damp out phonons whose wavelength was less than about 20 A.

3. EXPERIMENTAL VALUES FOR ELASTIC MODULUS ALONG
THE CHAIN—E11

When a crystalline polymer like high density polyethylene or nylon is
oriented by drawing, the overall modulus in the draw direction increases
markedly. With a highly oriented specimen, the molecular arrangement can
be regarded to a first approximation as a series arrangement of crystalline
and amorphous regions (Figure 11; see for example also ref. 7), and if the
moduli are represented as E0, E11 and Ea, for the overall oriented specimen
in the draw direction, the crystalline regions and the amorphous regions
respectively, then

(1/E0) (1 Vc)/Ea + ViE11 (18)

where V,is the volume fraction of the crystalline phase. A minor problem in
using this equation is that Ea, the modulus of the amorphous region cannot
be regarded as invariant since the amorphous phase may itself be oriented
to a greater or lesser extent by the drawing operation. For example Dulmage
and Contois'2 found that Ea could be increased by a factor of three by
drawing

The overriding influence of the amorphous region in a series arrangement
can be illustrated by the following imaginary case. Suppose I' = 0.5,
E = 2 x 1010 dyne cm2 and E11 = 200 x 1010 dyne cm2. These data
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a

Diagrammatic series
arrangement of two phases

for comparison

Figure 11. Diagrammatic arrangement of crystalline and amorphous regions in an oriented
polymerfibre.

are not too far from the case of polyethylene, Ea being higher than the iso-
tropic amorphous material because of the effect of orientation.

1 0.5 0.5=
2 x 10b0

+
200 x 10_b

cm2 dyne'

E0 = 4 x 1010 dyne cm2

(19)

Whilst examining the data in Table 1, it should be borne in mind that the
overall modulus E0 of fibres in practice is of the order of 2—10 x 1010 dyne
cm2. The results of this work are shown on the LHS of Table 1, which shows
the measured moduli in the chain direction of the crystalline regions of a
number of polymers. In the great majority of cases, the x-ray method was
used. This is the most direct method, since a stress is applied to the specimen
and the resulting extension is measured. It suffers from the drawback, already
mentioned, that it is assumed that the overall applied stress is identical with
the stress which is transferred to the crystalline regions. In two cases, low-
frequency Raman scattering spectra were used to calculate the modulus.
There is one example of INSS applied to deuterated high density polyethylene
from which the longitudinal modulus has been calculated. In any discussion
on the stiffness of polymers, a case can be made for including the Raman
and neutron spectroscopy values in either the measured or the theoretically
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calculated series of figures. We have chosen to class them as measured values.
The experimental results set out on the LHS of Table 1 are also shown

graphically in Figure 12 for convenience. It will be seen that the measured
elastic modulus parallel to the chain axis varies from about 358 x iO'° dyne
cm2 for polyethylene (to take the highest value) to 4.1 x 1010 dyne cm2
for polyvinyl tert butyl ether—a factor of nearly ninety times. In contrast,
as will be seen later, the elastic moduli perpendicular to the chain will be in
the region of about 3 x 1010 dyne cm2, with a range of only about three
times.

The data in Table 1 show that, apart from diamond and graphite (parallel
to the layer planes), the highest moduli are encountered with the planar
zig-zag conformation. The examples in question are polyethylene and
polyvinyl alcohoL It will be seen that there is a marked drop in going even
to the very lazy helix (15/7) of polytetrafluorethylene which departs only
slightly from the planar zig-zag This point is well brought out in the
pioneering paper of Dulmage and Contois12. They investigated the elastic
modulus and extensivity of the crystalline regions of a range of highly
oriented fibres. The eight polymers were polyesters or polyesteramindes,
one of which was polyethylene terephthalate. A low modulus could be
associated unequivocally with a contracted fibre identity period (FIP) as
the following data, taken from their work, show:

Contraction of fibre E11 for crystalline
identity period regions, dyne cm2Mean of two fully extended

polymers 135 x 1010
Mean of six contracted examples 20% 5 x 10
As these authors pointed out, 'whenever very high elastic modulus is im-
portant, the polymers with contracted FIPs are probably basically deficient',
In the case of polyethylene, it is possible to compare directly results based on
x-ray measurements with those based on Raman and neutron spectra. The
x-ray results are much lower—240 x 10'° compared with 340 x 1010
dyne cm2—which leads one to query, as one possible reason for the dis-
crepancy, the assumption of uniform stress. If the modulus E of poly-
ethylene in the crystalline regions is more correctly represented by the value
340 x 1010 dyne cm 2, the conclusion might be drawn that the local stress
in these regions is higher than the average stress. A ratio of tYiocai: 0average
of 340/240 = 1.4 would be needed to account for the strains observed. On
the other hand, the work of Sakurada et al. referred to above (refs. 10, 14)
tends to support the assumption of homogeneous stress. As already discussed,
this difference cannot be explained in terms of dynamic versus static measure-
ments. It therefore remains unresolved at this stage.

There is a considerable discrepancy between the two results for poly-
ethylene terephthalate, obtained independently by Dulmage and Contois12
and by Sakurada, Ito and Nakamae'°, these being 140 and 76 x 1010
dyne cm2 respectively. It is suggestive that the former is closer to the
theoretical figure, but otherwise it is impossible to account for the difference.

Before turning to the theoretical calculations of E11, it is interesting to
compare these values for stiffness, and specific stiffness, with other materials.
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E11 measured

Table 1. Experimental and calculated value

Ref Polymer Methofl ValueofE1 Comments Date Authors
dyne cm2

10 Cellulose I xray* 130 x 1010 Staggered ring 1964 Sakurada, Ito
and Nakamae

x-ray 140 x 1010

x-ray 76 x 1010

255 x 1010 Planar
zig-zag

x-ray 12 x 1010 Helix

x-ray 25 x 1010 cc Form Planar
21 x 10'°yForm zig-zag

10 x 10'° Helix

Helix

Sakurada, Ito
and Nakamae

1964 Sakurada, Ito
and Nakamae

1949 Mizushima and
Shimanochi

1967 Shauffele and
Shimanouchi

1968 Feldkamp.
Venkataraman and
King

1958 Dulmage and
Contoist

1964 Sakurada, Ito and
Nakamae

1964 Sakurada, Ito
Nakamae

1964 Sakurada, Ito
and Nakamae

1964 Sakurada, Ito
and Nakamae

1964 Sakurada, Ito
and Nakamae

10 Cellulose II

10 Polyethylene

41

42

26

x-ray 90 x 1010 Staggered ring 1964

x-ray 240 x 1010 Planar
zig-zag

Raman 340 x 1010

Raman 358 x 1010

neutron 329 x 1010 (CD2),

10 Polypropylene x-ray
(isotactic)

10 Polyoxymethylene x-ray

10 Polytetrafluor- x-ray
ethylene

42 x 1010

54 x 10"

3/1 helix 1964 Sakurada, Ito
and Nakamae

9/5 helix 1964 Sakurada, Ito
and Nakamae

12 Poly(ethylene-
terephthalate)

10

156 x 1010 15/7 helix 1964

10 Polyvinyl alcohol x-ray

planar
zig-zag

10 Polystyrene

10 Nylon 6

Nylon 66

10 Polyethylene oxide x-ray

Polyvinyl chloride
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for elastic moduli along the chain —E11

L11 calculated

Ref Method Value ofE1 Comments Date Authors
dyne cm

36 2 constant valence
force field

37 2 constant valence
force field

38 2 constant valence
force field

38 2 constant valence
force field

44 4 constant Urey—
Bradley force field

46 8 constant Urey—
Bradley force field

45 4 constant Urey—
Bradley force field

45 4 constant Urey—
Bradley force field

44 4 constant Urey-
Bradley force field

37 2 constant valence
force field

38 2 constant valance
force field

37 2 constant valence
force field

38 2 constant valence
force field

55 4 constant Urey—
Bradley force field

45 4 constant Urey—
Bradley force field

P.A.C.—26/3-4K*

Treloar

Shimanouchi, Asahina
and Enomoto
Odajima and Maeda

Asahina and Enomoto

Asahina and Enomoto

1962 Shimanouchi, Asahina
and Enomoto

77 or 121 x 1010 Meyer and Lotmar1936

1958 Lyons

1960 Treloar

1960

1962

1966

1962

1962

180 x 1010

56 x 1010

182 x 1010

340 x 1010

256 x 1010

49 x 1010

(220 or) 150 x 1010

160 x 1010

146 x 1010

121 x 1010

157 x 1010

196 x 1010

13 x 1010 compare value in
ref. 24

200, 230, 160 x 1010 syndiotactic
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Table 1
E11 measured

Ref Polymer Met hod Va1ue of
dyne cm

Comments Date Authors

Polyisobutylene Helix

10 Polybutene I x-ray 25 x 1010 Helix 1964 Sakurada, Ito
(form I) and Nakamae

10 Polyvinyl tert x-ray 4.1 x 10'° Helix 1964 Sakurada, Ito
butyl ether and Nakamae

10 Polytetrahydro- x-ray 55 x 1010 Planar 1964 Sakurada, Ito
furan zig-zag and Nakamae

10 Polyvinylidene x-ray 41.5 x io° ? 1964 Sakurada, Ito
chloride and Nakamae

Poly-3,3-bis-halo- Planar
methyl oxycyclo- zig-zag
butanes

54 Diamond 800 x l0'°
54 Graphite 450 x iO'°

1000 x lO'°
Carbon fibre
Graphite
(basal plane)

* For further information on the lattice planes used for measurementt, see refs 10 and 12.
This important paper contains modulna data on acven other condensation polymers, with E11 ranging from 3.7 to 130 x 101*

dyne cm -2

The high specific stiffness of the polyethylene crystal, in the chain direction,
is noteworthy, see Table 2.

Table 2. Young's modulus, and specific modulus, of a range of materials

Specific gravity
p

Modulus, E
(1010 dyne cm2)

E/p
(1010 dyne cm2)

Aluminium 2.7 71 26
Iron 7.8 205 26
Glass 2.5 68 27
Beryllium 1.8 302 168
Silicon carbide 3.2 547 171
Carbon 2.3 1000 439
High density polyethylene (isotropic) 0.95 1.4 1.4
High density polyethylene (fibre) 0.95 15 15

High densty polyethylene
(crystal-a.11) 1.00 350 350

4. THEORETICAL VALUES FOR ELASTIC MODULI ALONG
THE CHAIN E

The pioneering theoretical work of estimating the modulus of elasticity
of polymers was carried out by Meyer and Lotmar36. They showed in 1936
that the modulus corresponding to the principal chain direction of a polymer
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THE STIFFNESS OF POLYMERS IN RELATION TO T9EIR STRUCTURE

E11 calculated

Ref Method Value ofE1
dyne cm

Comments Date Authors

45 4 constant Urey— 8.4, 7 x 1010 1962 Asahina and Enomoto
Bradley force field

45 4 constant Urey— 77—110 x 1010 (passing from iodine 1962 Asahina and Enomotc
Bradley force field to fluorine as halogen)

The temperature at which the modulus was measured in the various experiments falls within the range 20 to 28CC. See refs. 10 and 12.
§ The specimen moduli (as opposed to the modulus E11 of the chain in the crystalline region) fall within the range 2 to 23 x lO'

dyne cm2. See refs. 10 and 12.

crystal could be calculated from the force constants of the chemical bonds
of the chain derived from vibration frequencies of other molecules. They
applied this method to cellulose, considering two modes of deformation—
bond stretching and bond angle opening The method was extended by
Lyons37 to nylon 66 and polyethylene terephthalate, and by Treloar38 to
polyethylene. Treloar also re-examined the work of Meyer and Lotmar,
and Lyons, and his calculations represent the latest refinement of the valence
force field 2 constant type.

The nature of this method will now be explained. Only the chain atoms are
considered, and the effect of interchain ferces is neglected. In the case of a
planar zig-zag molecule like polyethylene, consider a force F acting along the
chain. If U is the angle of inclination of each carbon—carbon bond to the

Polyethylene chain

F—--/\/\t\/V\/\/\/ F
chain axis, then the change of length öl caused by the application of force F
is (ref. 17)

nF[cos2O/k1 + sin2O/4k]
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THE STIFFNESS OF POLYMERS IN RELATION TO THEIR STRUCTURE

where n is the number of bonds, k1 is the force constant for bond stretching,
and k is the force constant for valence angle opening (for the definition of k1
and k, see ref. 17). Using the formula

E = (F/A)/(L/L) (21)

and knowing the cross-sectional area of the chain A, the elastic modulus
can be calculated. The force constants used by Meyer and Lotmar, Lyons and
Treloar are shown in Table 3.

From this, the care taken by Treloar to choose the most suitable force
constants is evident. Nevertheless, the method cannot be regarded as being
very unrefined in comparison with more recent work, and it tends to give
low values when compared with experiment.

In connection with this valence force field type of calculation, the simple
approach of Dulmage and Contois based on force constants similar to
Table 3 is of considerable interest12 The results of their calculations are
shown in Figure 13 and Table 4. They considered extension in the chain

MODE OF DEFORMATION

Figure13. Moduli based on fundamental deformation mechanisms.
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THE STIFFNESS OF POLYMERS IN RELATION TO THEIR STRUCTURE

direction, according to three quite distinct modes. The stiffest mode is
represented by the extension of a single bond, next came valence angle
opening, the third being rotation around bonds. The resistance to deforma-
tion in these three cases is roughly in the ratio of 100:10:1.

Table 4. Moduli along the chain (E11) based on alternative modes of deformation

Equivalent
modulus

dyne cm2

Source

Bond stretching 740 x 1010 Dulmage and Contois'2
Valence angle opening 80 e 1010 Dulmage and Contois'2
Bond rotation 6 x 1010 Dulmage and Contois12
Bond rotation 6 x 1010 P. B Bowden4°

At the moment there is no known carbon polymer with a modulus con-
trolled solely by bond stretching. In the experimentally realizable type of
stiff chain such as polyethylene, valence bond opening plays a very important
role. However, the mechanism of bond rotation can be seen to be controlling
in many cases, as is evident on comparing Figure 12 with Figure 13, and as
showed up quite clearly in Dulmage and Contois's own modulus measure-
ments discussed earlier. They concluded that the higher modulus polymers
extended by the bond stretching, and bond angle opening mechanisms, but
for the lower modulus materials, the fundamentally different mechanism
of simultaneous internal rotation of all chains in the crystalline region would
be the controlling process. This would also correlate with a contracted
fibre identity period.

The first improvement of the valence force field type of calculation, in an
attempt to simulate the elastic modulus determined from Raman scattering
measurements, introduced a Urey—Bradley force field for the molecule.
Shimanouchi, Asahina and Enomoto44 included contributions from inter-
atomic repulsions and bond twisting as well as the carbon—carbon stretch
and bending modes of deformation in their expression for the potential
energy of the polyethylene molecule. For this calculation the CH2 groups
were treated as a single dynamical unit thus avoiding the need for the H—H
force constants. The extra force constants required for this calculation were
obtained from Raman data for paraffin hydrocarbons41 and the value
obtained for the elastic modulus of the chain was 340 x io'° dyne cm2,
in complete agreement with the earlier Raman measurements. A tantalizing
situation then arose, when the theoretical calculation gave a higher value
for E11 than the x-ray measurements of Sakurada, Ito and Nakamae. Asahina
and Enomoto went on45 to calculate the modulus of a number of other
polymer chains. In the case of certain helical arrangements such as poly-
ethylene oxide and polyisobutylene, they predicted values of E11 in the
neighbourhood of 4—8 x 1010 dyne cm2 which agreed well with subsequent
x-ray measurements as shown in Table 1. A later calculated value for poiy-
ethylene oxide51 gave a modulus of 13 x 1010 dyne cm2.
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The most recent refinement in the theoretical calculation of the chain axis
modulus of polyethylene comes from Odajima and Maeda46 in 1966. A
Urey—Bradley force field was used for the intramolecular interactions, but
instead of the carbon skeleton model as used previously44, stretching
constants were used for, C—C, C—H ; angle bending constants for C—C-—C,
H—C-'--H, C—C—-H and non-bonding constants for carbon—carbon,
hydrogen—hydrogen and carbon—hydrogen interactions within the chain.
The constants used were taken from the data of Shimanouchi et aL47, and
Schachtschneider and Snyder48. In addition, the intramolecular force field
was considered, and interaction potentials of the 6-exponential, and Lennard-
Jones 6-12 types were both used. This calculation attempts the ultimate
sophistication in molecular crystal static calculations. Values of the long
axis and various transverse moduli were obtained (with the latter of which
we deal later). The c-axis modulus was calculated to be 256 x 1010 dyne cm 2,
and how this compares with other calculations, and with the experimental
data, can be seen from Table 1. It is of the same order as the x-ray measure-
ment, but considerably lower than the moduli determined from Raman and
neutron data. It is interesting to note that the contribution to E from the
intramolecular part of the interaction was found to be only 0.2 per cent It
is unlikely that the discrepancy between the calculations of Odajima and
Maeda, and the Raman and neutron scattering values can be explained by
the intermolecular constants chosen, since the axial modulus is so insensitive
to the transverse force field.

5. EXPERIMENTAL VALUES FOR ELASTIC MODULUS
TRANSVERSE TO THE CHAIN E1

In comparison with experimental and theoretical work dealing with the
longitudinal modulus, relatively little has been done in the transverse direc-
tion. A summary of this work is shown in Table 5. The general picture which
emerges is consistent with our understanding of- intermolecular forces—the
moduli are much lower than in the chain direction, and the range covered
varies by a factor of only three. Furthermore, the x-ray measurements appear
to be self-consistent as we seek to show in Figure 14.

In this, the average values of the transverse moduli are plotted against the
cohesive energy density of the material. It would be expected that the more
polar the polymer—this criterion being measured adequately by cohesive
energy density—the higher the transverse modulus. This hypothesis seems to
be borne out adequately by Figure 14.

Against this must be set the rather higher value for E obtained by the
Odajima and Maeda calculation and by Twisleton and White24 using
neutron spectroscopy. Their figure of 6.0 x 1010 dyne cm2 should be
compared with the mean x-ray figure for Ea of polyethylene of 3.3 x 1010
dyne cm2 As pointed out above, in the discussion on experimental methods,
it does not appear that this discrepancy can be explained by reference to the
fact that one is a dynamic, the other a static measurement Furthermore, the
Samuels value of 4.0 x 1010 dyne cm2 obtained by using sound wave
measurements is of the same order as the x-ray figure. We must leave the
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subject in this unsatisfactory state until further experimental work clarifies
these differences.

Figure 14. Plot of moduli perpendicular to chain against cohesive energy density.

6. THEORETICAL VALUES FOR ELASTIC MODULUS
TRANSVERSE TO THE CHAIN Ei

Table 5 also shows the calculated values for E1, which can be compared
with the measured values. Apart from a figure for graphite at right angles to
the layer planes, and a calculated figure for argon, these values all pertain to
polyethylene. It will be seen that there are considerable differences in them.

The work was pioneered by Enomoto and Asahina49, and Miyazawa and
Kitagawa50, who both used a carbon skeleton, nearest neighbour only force
field for the lattice modes of the polyethylene crystaL Hydrogen interactions
included in the lattice force field were derived by using intermolecular
potential data for methane. Quite different sets of results were obtained by
these authors, the first giving Ea = E,, = 2.1 x 1010 dyne cm2, whilst the
latter authors' calculation gave Ea = 5.7 x 1010 dyne cm2 and Eb = 2.1 X

1010 dyne cni 2 There is an even greater difference in the values attributed to
Miyazawa and Kitagawa by Sakurada'°, where Ea 6.7 x 1010 and
Eb = 10.8 x 1010 dyne cm2 Both calculations paralleled the Shimanouchi
Urey—Bradley field for the intramolecular motion, and used three external
force constants only between atoms in the crystal unit cell. This procedure
seemed justified by work on the external vibrations of n-paraffins, whose
intermolecular forces have been shown to be mainly of the van der Waals
type51. The Miyazawa and Kitagawa calculation5° of the density of crystal
phonon states agrees quite well with incoherent, inelastic neutron scattering
measurements22'43 and it agrees with low temperature specific heat measure-
ments for the polyethylene crystal.

Finally the extended calculations of Odajima and Maeda46 also treated
exhaustively the lattice moduli in the transverse direction. Two sets of values
which differed only slightly were obtained, depending on the interatomic
constants chosen. These support the possibility that E,, > Ea and suggest a
higher value for Ea than the x-ray data.
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Table 5. Experimental and calculated values for elastic moduli transverse to the chain—E1

E1 measured
Modulus normal to lattice planes Method Authors (ref.)

Polymer E x 10-10 dyne cm2
110 200(E5) O2O(Eb) Other

Polyethylene 4.3 3.2 3.9 — x-ray Sakurada, Ito and
Nakamae (10)

— 3.2 3.9 — x-ray Quoted by Odajima
and Maeda (46)

2.5 1.9
5.0

6.0* 6.0* — — neutron Twisleton and
White (20)

Polypropylene 2.9 3.2(040) x-ray Sakurada, Ito and
Nakamae (10)

4.0 sonic Samuels (8)
Polyvinyl alcohol 89 9.0 x-ray Sakurada, Ito and

(101) x-ray Nakamae (10)
4.7

(002)
Polyoxymethylene 8.0 x-ray Sakurada, Ito and

(1010) Nakamae (10)
Polytetrahydrofuran 4.6 4.6 x-ray Sakurada, Ito and

Nakamae (10)
Polyethylene oxide 4.4 x-ray

(120)
Graphite I to layer 39 neutron
planes
Hexadecane crystal 1.5 neutron Twisleton
Argon 3.0 sonic

Polymer
E1 calculated

Modulus Comments Authors (ref.)
E x 10'° dyne cm2

110 200(E5) O20(Eb)

Polyethylene 5.7 2.1 Urey—Bradley Miyazawa and
molecular field Kitagawa (50)
Lennard—Jones
intermolecular

6.7 10.8 Quoted by Miyazawa and
Sakurada, Ito Kitagawa
and Nakamae
(10)

2.1 2.1 Enomoto and
Asahina (49)

4.91 4.76 8.33 6 exponential Odajima Set I
potential with and Maeda (46)

6.84 two sets of Set III
interatomic
constants

* The same number is quoted fo r each direction here in view of the ambiguity mentioned on page 562.

7. THE PROBLEM OF ISOTROPIC POLYMERS
In the world of technology, polymers are used to the greatest extent in

their isotropic form. They may be glassy and amorphous, like polystyrene, or
576



THE STIFFNESS OF POLYMERS IN RELATION TO THEIR STRUCTURE

semicrystalline, like polyethylene, but in both cases they are used most
frequently in the bulk isotropic forms. If science is to serve technology, one aim
of the work with which we have dealt to date must be to predict or explain
the stiffness of isotropic polymers. To what extent has this aim been fulfilled?

A brief consideration of the subject shows that it is made up of two problems.
In the first place there is the problem of accounting for the stiffness of amor-
phous polymers, where we are handicapped by our lack of knowledge of the
fine structure. More precisely, as with inorganic glasses, we lack a language
to describe the structure because we lack the tools to elucidate it. Newer
techniques such as small angle x-ray and long wavelength neutron scattering
may be quite valuable here.
• Another problem arises when dealing with semicrystalline polymers. We
may regard them for many purposes as composite materials, made up of an
amorphous phase and a polycrystalline phase. This is a crude but convenient
picture, since it enables the basic concepts underlying the science of composite
materials to be used (see e.g. ref. 52). Given the geometrical arrangements of
the two phases (and this clearly involves far more than a mere knowledge of
volume fractions), and given the stiffness of these phases, the problem is to
predict the stiffness of the material. Underlying this is therefore the subsidiary
problem of calculating the average stiffness of the polycrystalline phase from
the moduli of the crystals along the chain, and transverse to the chain.

(a) Isotropic amorphous polymers
With this introduction, we consider first the isotropic amorphous polymer.

Stiff materials of this type have Young's moduli in practice of the order of
3—6 x 1010 dyne cm2 (this is in the region of polystyrene and thermosets).
It would be attractive to be able to calculate this from compressibility data.
Consider the relationship between K (bulk modulus) (= 1//I where fl is the
compressibility), E (Young's modulus) and v (Poisson's ratio) for an isotropic
material. If

K E/3(1 — 2v) (3)

E = 3K(1 2v) (22)
or

E = 3(1 — 2v)//3 (23)

Now /3 for.stiflpolymers is in the region of 0.15—0.3 x 10b0 dyne cm2 and
v is of the order of 0.3. Substituting these values in equation 23 gives the
Young's moduli of 3—6 x 1010 dyne cm 2 mentioned above. To use this
equation predictively, however, we must be able to calculate /3 and v from
first principles. Whilst some progress has been made towards calculating /3
for polymers (e.g. ref. 56), very little work indeed has been done on Poisson's
ratio v. As far as the authors are aware, no work has been done on relating
Poisson's ratio to structure. This remains an interesting terra incognita for
research, a situation which appears to be true for other materials also.

Bowden4° has made a direct approach to the problem of calculating the
stiffness of an isotropic glassy polymer. Bowden's argument takes the following
form. The modulus of van der Waals solids is of the order of 4 x 1010 dyne
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cm2 (e.g the transverse modulus of polyethylene or the modulus of solid
argon; it should be noted here, however, that there is evidence that the E1
for polyethylene may be >4 x 1010 dyne cm2, see Table 5). If this is a
value based on van der Waals forces for a crystalline solid the value will be
lower for amorphous polymers since the chain packing is irregular. This
leads to an average increase in interchain distance which will reduce the van
der Waals forces to the point where the modulus will be <4 x 1010 dyne
cm2, in which case some other mechanism is required to account for
measured moduli of 3—6 x 1010 dyne cm2. These higher values can be
explained on the reasonable assumption that the extension of an isotropic
amorphous polymer takes place by rotation about carbon—carbon bonds in
the chain backbone. Such a mechanism would lead to a calculated modulus
of 5.7 x 1010 dyne cm2 for amorphous polyethylene (this is close to the
value calculated by Dulmage and Contois for this mode of deformation'2

Arguments such as these yield figures for Young's modulus of the right
order. For further progress to be made, a better structural model of an
amorphous polymer is required. There are signs that such a model may be
developed (see e.g ref. 57).

(b) Isotropic semicrystailme polymers
Turning to the problem of the isotropic semicrystalline polymer such as

polyethylene, this can be formulated as follows

Epea = f(Eam, Vg) (24)

where Epca is the Young's modulus of the isotropic semicrystalline polymer,
Earn is the Young's modulus of the amorphous phase, is the Young's
modulus of the polycrystalline phase, Vg is a term to represent the volume
fraction of one of the phases, and all other geometrical variables such as
crystallite size which will affect the modulus.

Furthermore, it can be expected from Hill's theory9 that

E(v)PC> E> E(R)PC (25)

where E(v)PC and E(R)PC are the Voigt and Reuss averages of the elastic
behaviour of the crystallites. These averages are derived from the elastic
theories of a randomly oriented arrangement of small crystals, developed
by Voigt58 and Reuss59. Voigt assumed uniform strain throughout the
assemblage whilst Reuss assumed uniform stress. Expressions 24 and 25
imply that there will be no unique value of Epca or It is likely that each
will fall between upper and lower bounds.

Davidse, Waterman and Wasterdijk53 have examined experimentally the
elastic modulus of semicrystalline polyethylene extrapolated to 100 per cent
crystallinity. This yields a value which should correspond to in equations
24 and 25. In this particular example, they obtained a value of = 5.05 x
1010 dyne cm2 More recently Gray and McCrum6' have used a theoretically
justified extrapolation procedure to obtain the amorphous and crystalline
shear moduli of linear polyethylene at a measuring frequency of 0.67 Hz. At
— 190°C this method gave = 13 x 1010 dyne cm2 assuming Poisson's
ratio = 0.3. For comparison, it is worth recalling that El is of the order
of 300 x lOb dyne cm2 and E1 of the order of 5—10 x 1010 dyne cm2.
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The enormous predominance of E1 in the average can thus be clearly seen
and emphasizes the need for a precise value in the crystalline regions.

In their paper46, Odajima and Maeda treat the same problem from a
theoretical point of view, using their calculated values for the elastic constants
of the polyethylene crystal. From these, they calculated the Voigt and Reuss
averages and obtained the following results for the polyethylene polycrystaL

Table 6. Young's modulus of polycrystalline polyethylene

Reuss average Voigt average Experimental53
Set I Set III Set I Set III

dnecm_2 4.90 5.82 15.6 15.8 5.05

The distinction between Set I and Set III refers to the alternative force
constants used in the theoretical calculation of elastic constants by Odajima
and Maeda. It will be seen that in this particular case the experimental data
support the Reuss average, which is based on the assumption of uniform
stress. Another value which would be required to make use of the expression
set out as equation 24 is Earn, the modulus of the amorphous phase. The
problems associated with predicting a value of Earn are typified in the paper
by Bowden4° discussed earlier. They are further complicated by the fact that
the amorphous phase in a semicrystalline polymer may be rubbery or glassy
which means that Earn may vary within the range io to 1010 dyne cm2.
According to Gray and McCrum6' Earn = 3.2 x 1010 dyne cm2 at —190°C
for polyethylene but decreases to 0.5 >< 1010 dyne cm2 at —80°C because
of a low temperature relaxation. The value for polyethylene is around iO
dyne cm2 However, values above and below this range will also be encoun-
tered. For example, Dulmage and Contois12 assumed a value for Earn with
their fibre-forming polymers of 2 x 1010 dyne cm 2 this corresponding to
the modulus of the bulk polymer in the unoriented and amorphous state.

Uncertainty over the value of Earn forms one of the main difficulties in
calculating the Young's modulus of an isotropic semicrystalline polymer.
This can be illustrated by reference to Figure 15 which represents equation 11
graphically and which shows the upper and lower bounds for the modulus
when combining two phases 1 and 2 (see e.g. ref. 52). Assume that E1 represents
the modulus of the polycrystalline material, which appears from Odajima
and Maeda's calculations may be close to the Reuss average. E2 represents
the modulus of the amorphous phase. A material at X will have a modulus
between A and B, close to the lower bound. The precise value will depend on
the crystallite size as well as on the volume fraction. The effect of a reduction
in modulus of the amorphous phase can be seen by comparing the bounds
from point D with those from point C.

It has already been pointed out that the modulus of the amorphous phase
may be increased by the process of orientation. There is also evidence that
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Figure 15. Upper and lower bounds of Young's modulus for a two-phase material.

the modulus of the amorphous phase may depend upon the degree of crystal-
unity. This appears from the work of Krigbaum, Roe and Smith6° which is
primarily directed towards a theoretical treatment of the modulus of semi-
crystalline polymers, based on a refined statistical model. In this model, it
is assumed that the process of crystallization places the remaining amorphous
chains under considerable tension. If this model is correct, then Earn is effec-
tively a function of the volume fraction of the crystalline phase—see equation
24. What is of equal significance to the present paper, is that Krigbaum eta!.
are able to calculate with reasonable accuracy the modulus of polyethylene
based on modified statistical theory.

8. CONCLUSIONS
In dealing with the stiffness of polymers in relation to their structure, we

have covered the range of Young's modulus from i0 to 1013 dyne cm2,
this being the range from a soft amorphous polymer to the stiffness of graphite
in the basal plane. Most attention has been devoted to the modulus of polymer
crystals, along the chain and transverse to the chain. There is reasonable
agreement between theory and practice in this case, and every reason to
hope that further work will explain the discrepancies without fundamentally
altering the picture, but possibly giving new data on the amorphous regions.
The molecular modes of deformation have been clearly elucidated.

In passing from anisotropic to isotropic polymers the position becomes
progressively more complex. Thus, theory adequately explains the stiffness
along the chain in a polymer crystal, and with this as basis it is possible to
account for the stiffness of highly oriented fibres, in which crystalline regions
are effectively arranged in series with amorphous regions. The difference
between the stiffnesses of different types of fibres is also readily explained
in terms of the operative molecular modes of deformation. However, with
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isotropic polymers, particularly the semicrystalline examples, the strUctural
complexity of these materials makes model building difficult

At the moment, it is possible to draw a line, at around an E value of 6 x 1010
dyne cm -2, between isotropic and anisotropic polymers. Stiffness below this
amount can be obtained in isotropic materials. Above this, use must be made
of orientation to obtain the desired stiffness and results in excess of 10"
dyne cm 2 can be obtained. Where even higher stiffnesses are required,
theory can suggest which modes of molecular deformation should be sup-
pressed, and which relied upon.
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