CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2009, Vol. 81, No. 10, pp. 1799-1828

http://dx.doi.org/10.1351/PAC-CON-08-09-24

Published online 2009-10-05

Force field for the atomistic simulation of the properties of hydrazine, organic hydrazine derivatives, and energetic hydrazinium ionic liquids

Keith E. Gutowski, Burcu Gurkan and Edward J. Maginn*

Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556-5637, USA

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Choudhry Kashif I., Svishchev Igor M., Plugatyr Andriy: Split-flow Taylor dispersion technique for diffusivity and concentration measurements of hydrazine in aqueous solution. Can. J. Chem. 2014, 92, 279. <http://dx.doi.org/10.1139/cjc-2013-0518>
  • Ueno Seiji, Tanimura Yoshitaka, Ten-no Seiichiro: Molecular dynamics simulation for infrared spectroscopy with intramolecular forces from electronic properties of on-the-fly quantum chemical calculations. Int. J. Quantum Chem. 2013, 113, 330. <http://dx.doi.org/10.1002/qua.24179>
  • Kallikragas Dimitrios T., Choudhry Kashif I., Plugatyr Andriy Y., Svishchev Igor M.: Diffusivity and hydration of hydrazine in liquid and supercritical water through molecular dynamics simulations and split-flow pulse injection experiments. J. Chem. Phys. 2013, 139, 134507. <http://dx.doi.org/10.1063/1.4823513>
  • Martin Marcus G.: MCCCS Towhee: a tool for Monte Carlo molecular simulation. Molecular Simulation 2013, 39, 1212. <http://dx.doi.org/10.1080/08927022.2013.828208>
  • Elts Ekaterina, Windmann Thorsten, Staak Daniel, Vrabec Jadran: Fluid phase behavior from molecular simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and binary mixtures containing these compounds. Fluid Phase Equilibria 2012, 322-323, 79. <http://dx.doi.org/10.1016/j.fluid.2012.03.008>
  • Hunt Sean W., Nesterov Vladimir, Richmond Michael G.: Ligand substitution in 1,2-Os3(CO)10(MeCN)2 by the diphosphine (PhO)2PN(Me)N(Me)P(OPh)2: X-ray diffraction structure of 1,2-Os3(CO)10[(PhO)2PN(Me)N(Me)P(OPh)2] and DFT investigation of the isomeric Os3(CO)10[(PhO)2PN(Me)N(Me)P(OPh)2] clusters. J Mole Struct 2012, 1010, 91. <http://dx.doi.org/10.1016/j.molstruc.2011.11.037>
  • Wu Hao, Shah Jindal K., Tenney Craig M., Rosch Thomas W., Maginn Edward J.: Structure and Dynamics of Neat and CO2-Reacted Ionic Liquid Tetrabutylphosphonium 2-Cyanopyrrolide. Industrial Eng Chem Res 2011, 50, 8983. <http://dx.doi.org/10.1021/ie200518f>
  • Hooper Justin B., Borodin Oleg, Schneider Stefan: Insight into Hydrazinium Nitrates, Azides, Dicyanamide, and 5-Azidotetrazolate Ionic Materials from Simulations and Experiments. Chem B 2011, 115, 13578. <http://dx.doi.org/10.1021/jp2044064>
  • Chaban Vitaly V., Voroshylova Iuliia V., Kalugin Oleg N.: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Phys Chem Chem Phys 2011, 13, 7910. <http://dx.doi.org/10.1039/c0cp02778b>
  • Chaban Vitaly: Polarizability versus mobility: atomistic force field for ionic liquids. Phys Chem Chem Phys 2011, 13, 16055. <http://dx.doi.org/10.1039/c1cp21379b>
  • Chaban Vitaly V., Prezhdo Oleg V.: A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. PCCP 2011, 13, 19345. <http://dx.doi.org/10.1039/c1cp22188d>