CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2006, Vol. 78, No. 6, pp. 1157-1172

http://dx.doi.org/10.1351/pac200678061157

Materials processing at atmospheric pressure: Nonequilibrium effects on nanotechnology and mega-industries

Tomohiro Nozaki and Ken Okazaki

Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo, 1528552, Japan

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • TYATA RAJU BHAI, SUBEDI DEEPAK PRASAD, SHRESTHA RAJENDRA, WONG CHIOW SAN: Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge. Pramana - J Phys 2013, 80, 507. <http://dx.doi.org/10.1007/s12043-012-0494-z>
  • Ananth Antony, Gandhi Mani Sanjeeva, Mok Young Sun: A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2nanorods. J. Phys. D: Appl. Phys. 2013, 46, 155202. <http://dx.doi.org/10.1088/0022-3727/46/15/155202>
  • Patel J, Němcová L, Maguire P, Graham W G, Mariotti D: Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 2013, 24, 245604. <http://dx.doi.org/10.1088/0957-4484/24/24/245604>
  • Sumiishi Yujiro, Uesugi Yoshihiko, Tanaka Yasunori, Ishijima Tatsuo: Enhancement of Non-Equilibrium Atmospheric Pressure He Plasma Discharges by Using Silicon Diode for Alternating Current. J. Phys.: Conf. Ser. 2013, 441, 012018. <http://dx.doi.org/10.1088/1742-6596/441/1/012018>
  • Chen Yung-fou: Forensic Applications of Nanotechnology. Jnl Chinese Chemical Soc 2011, 58, 828. <http://dx.doi.org/10.1002/jccs.201190129>
  • Urabe Keiichiro, Sakai Osamu, Tachibana Kunihide: Combined spectroscopic methods for electron-density diagnostics inside atmospheric-pressure glow discharge using He/N2 gas mixture. J Phys D Appl Phys 2011, 44, 115203. <http://dx.doi.org/10.1088/0022-3727/44/11/115203>
  • Arnoult G, Belmonte T, Kosior F, Dossot M, Henrion G: On the origin of self-organization of SiO2 nanodots deposited by CVD enhanced by atmospheric pressure remote microplasma. J Phys D Appl Phys 2011, 44, 174022. <http://dx.doi.org/10.1088/0022-3727/44/17/174022>
  • Mariotti Davide, Sankaran R Mohan: Perspectives on atmospheric-pressure plasmas for nanofabrication. J Phys D Appl Phys 2011, 44, 174023. <http://dx.doi.org/10.1088/0022-3727/44/17/174023>
  • Belmonte T, Gries T, Cardoso R P, Arnoult G, Kosior F, Henrion G: Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?. Plasma Sources Sci Technol 2011, 20, 024004. <http://dx.doi.org/10.1088/0963-0252/20/2/024004>
  • Arnoult G., Belmonte T., Henrion G.: Self-organization of SiO[sub 2] nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma. Appl Phys Lett 2010, 96, 101505. <http://dx.doi.org/10.1063/1.3360228>
  • Mariotti Davide, Sankaran R Mohan: Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 2010, 43, 323001. <http://dx.doi.org/10.1088/0022-3727/43/32/323001>
  • Urabe Keiichiro, Ito Yosuke, Sakai Osamu, Tachibana Kunihide: Interaction between Dielectric Barrier Discharge and Positive Streamer in Helium Plasma Jet at Atmospheric Pressure. Jpn J Appl Phys 2010, 49, 106001. <http://dx.doi.org/10.1143/JJAP.49.106001>