CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2002, Vol. 74, No. 11, pp. 2145-2158

Effects of iron oxidation states on the surface and structural properties of smectites

J. W. Stucki*, K. Lee, L. Zhang and R. A. Larson

Department of Natural Resources and Environmental Sciences, University of Illinois, W-321 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL 61801, USA

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Colombo Claudio, Palumbo Giuseppe, He Ji-Zheng, Pinton Roberto, Cesco Stefano: Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 2014, 14, 538. <>
  • Navarro-Ruiz Javier, Ugliengo Piero, Rimola Albert, Sodupe Mariona: B3LYP Periodic Study of the Physicochemical Properties of the Nonpolar (010) Mg-Pure and Fe-Containing Olivine Surfaces. J. Phys. Chem. A 2014, 140219102405000. <>
  • Zegeye Asfaw, Yahaya Sani, Fialips Claire I., White Maggie L., Gray Neil D., Manning David A.C.: Refinement of industrial kaolin by microbial removal of iron-bearing impurities. Applied Clay Science 2013, 86, 47. <>
  • Bishop Janice L., Loizeau Damien, McKeown Nancy K., Saper Lee, Dyar M. Darby, Des Marais David J., Parente Mario, Murchie Scott L.: What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planetary and Space Science 2013, 86, 130. <>
  • Alexandrov Vitaly, Neumann Anke, Scherer Michelle M., Rosso Kevin M.: Electron Exchange and Conduction in Nontronite from First-Principles. J. Phys. Chem. C 2013, 117, 2032. <>
  • Carriazo J.G.: Influence of iron removal on the synthesis of pillared clays: A surface study by nitrogen adsorption, XRD and EPR. Applied Clay Science 2012, 67-68, 99. <>
  • Ilgen Anastasia G., Foster Andrea L., Trainor Thomas P.: Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochimica et Cosmochimica Acta 2012, 94, 128. <>
  • Holmboe Michael, Jonsson Mats, Wold Susanna: Influence of γ-radiation on the reactivity of montmorillonite towards H2O2. Radial Phys Chem 2012, 81, 190. <>
  • Liu Deng, Dong Hailiang, Bishop Michael E., Wang Hongmei, Agrawal Abinash, Tritschler Sarah, Eberl Dennis D., Xie Shucheng: Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica et Cosmochimica Acta 2011, 75, 1057. <>
  • Moroz T. N., Palchik N. A., Grigorieva T. N., Kolmogorov Yu. P., Derkachev A. N.: Microelements in nontronites from bottom sediments of the Sea of Okhotsk. J Surf Invest 2011, 5, 1073. <>
  • Úbeda X., Pereira P., Outeiro L., Martin D. A.: Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad Dev 2009, 20, 589. <>
  • Charradi Khaled, Gondran Chantal, Amara Abdesslem Ben Haj, Prévot Vanessa, Mousty Christine: H2O2 determination at iron-rich clay modified electrodes. Electrochimica Acta 2009, 54, 4237. <>
  • Simonsson Magnus, Hillier Stephen, Öborn Ingrid: Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma 2009, 151, 109. <>
  • Li Jing, Wu Feng, Deng Nansheng, Glebov Evgeni M., Bazhin Nikolai M.: Degradation of Orange II by heterogeneous photocatalytic reaction using montmorillonite KSF. React Kinet Catal Lett 2008, 95, 247. <>
  • Anastácio Alexandre S., Aouad Amina, Sellin Patrik, Fabris José Domingos, Bergaya Faïza, Stucki Joseph W.: Characterization of a redox-modified clay mineral with respect to its suitability as a barrier in radioactive waste confinement. Appl Clay Sci 2008, 39, 172. <>
  • Jaisi Deb P., Liu Chongxuan, Dong Hailiang, Blake Ruth E., Fein Jeremy B.: Fe2+ sorption onto nontronite (NAu-2). Geochimica et Cosmochimica Acta 2008, 72, 5361. <>
  • Liu Yanxiang, Li Jing, Wu Feng, Zhang Changbo, Deng Nansheng: INSIGHT INTO HETEROGENEOUS PHOTOCATALYTIC DEGRADATION OF PHENOL OVER MONTMORILLONITE KSF. Chem Eng Commun 2008, 195, 988. <>
  • Huaypar Yezeña, Bravo Jorge, Gutarra Abel, Gabriel Erika: Study of the structural modifications in activated clays by Mössbauer spectroscopy and X-ray diffractometry. Hyp Interact 2007, 175, 23. <>
  • Jaisi Deb P., Dong Hailiang, Liu Chongxuan: Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochimica et Cosmochimica Acta 2007, 71, 1145. <>
  • Grybos Malgorzata, Davranche Mélanie, Gruau Gérard, Petitjean Patrice: Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?. Journal of Colloid and Interface Science 2007, 314, 490. <>
  • Laribi S., Jouffrey B., Fleureau J.-M.: Experimental electron energy loss spectroscopy of clays. Eur Phys J AP 2007, 39, 257. <>
  • O'Reilly S.E., Furukawa Yoko, Newell Steven: Dissolution and microbial Fe(III) reduction of nontronite (NAu-1). Chem Geol 2006, 235, 1. <>
  • Komadel P., Madejová J., Stucki J.W.: Structural Fe(III) reduction in smectites. Appl Clay Sci 2006, 34, 88. <>
  • Lombardi Kátia Cylene, Mangrich Antonio Salvio, Wypych Fernando, Rodrigues-Filho Ubirajara Pereira, Guimarães José L., Schreiner Wido H.: Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy. Journal of Colloid and Interface Science 2006, 295, 135. <>
  • Tung H.C., Price P.B., Bramall N.E., Vrdoljak G.: Microorganisms Metabolizing on Clay Grains in 3-Km-Deep Greenland Basal Ice. Astrobiol 2006, 6, 69. <>
  • Furnare Luca J., Vailionis Arturas, Strawn Daniel G.: Molecular-level investigation into copper complexes on vermiculite: Effect of reduction of structural iron on copper complexation. Journal of Colloid and Interface Science 2005, 289, 1. <>
  • Hu Qinhong, Zhao Pihong, Moran Jean E., Seaman John C.: Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites. J of Contaminant Hydrology 2005, 78, 185. <>
  • Williams Lynda B., Canfield Brandon, Voglesonger Kenneth M., Holloway John R.: Organic molecules formed in a “primordial womb”. Geol 2005, 33, 913. <>