CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1970, Vol. 24, No. 2, pp. 361-392

http://dx.doi.org/10.1351/pac197024020361

The angular overlap model of the ligand field: theory and applications

C. E. Schäffer

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Tchougréeff Andrei L., Dronskowski Richard: Effective Hamiltonian Crystal Field As Applied to Magnetic Exchange Parameters in μ-Oxo-Bridged Cr(III) Dimers. J. Phys. Chem. A 2013, 117, 7980. <http://dx.doi.org/10.1021/jp404040c>
  • Vasileva N V, Gerus P A, Sokolov V O, Plotnichenko V G: Optical absorption of Ni2+and Ni3+ions in gadolinium gallium garnet epitaxial films. J. Phys. D: Appl. Phys. 2012, 45, 485301. <http://dx.doi.org/10.1088/0022-3727/45/48/485301>
  • Schäffer Claus E.: energy operators as idempotents in the angular overlap model of the ligand field. Int J Quantum Chem 2009, 5, 379. <http://dx.doi.org/10.1002/qua.560050845>
  • Schäffer Claus E., Bendix Jesper: Kohn–Sham DFT and ligand-field theory — Is there a synergy?. Can J Chem 2009, 87, 1302. <http://dx.doi.org/10.1139/V09-061>
  • Sato Tohru, Ceulemans Arnout: Vibronic and spin-orbit coupling of a d [sup 9] transition-metal ion encapsulated in an icosahedral cage: The (Γ[sub 8]+Γ[sub 9])×(g+2h) Jahn-Teller problem. J Chem Phys 2007, 126, 184501. <http://dx.doi.org/10.1063/1.2730504>
  • Rakitin Yu. V., Kalinnikov V. T., Khodasevich S. G., Novotortsev V. M.: Extended angular overlap model in the structure theory of transition metal complexes. Basic principles. RUCO 2007, 33, 551. <http://dx.doi.org/10.1134/S1070328407080015>
  • Rakitin Yu. V., Kalinnikov V. T., Khodasevich S. G., Novotortsev V. M.: Mechanism of formation of short metal-ligand bonds in linear molecules CuCl2 and NiCl2 molecules. RUCO 2007, 33, 631. <http://dx.doi.org/10.1134/S1070328407090011>
  • Combariza M. Yajaira, Fahey Angela M., Milshteyn Aleksandr, Vachet Richard W.: Gas-phase ion–molecule reactions of divalent metal complex ions: Toward coordination structure analysis by mass spectrometry and some intrinsic coordination chemistry along the way. Int J Mass Spectrosc 2005, 244, 109. <http://dx.doi.org/10.1016/j.ijms.2005.05.006>
  • Schäffer Claus E.: Extension of ligand-field theory to encompass bridged structures. Emphasis on the angular overlap model. Inorg Chim Ada 2000, 300-302, 1035. <http://dx.doi.org/10.1016/S0020-1693(99)00599-X>
  • Kennedy John M., Schäffer Claus E.: Geometrical and algebraical invariances and general angular dependences of sets of s-p hybrid orbitals. Their angular overlap model relevance. Inorg Chim Ada 1996, 252, 185. <http://dx.doi.org/10.1016/S0020-1693(96)05313-3>
  • Schäffer Claus E.: Mixing s orbitals into p and d orbitals. An attempt at bridging the angular overlap model and the valence shell electron pair repulsion model. Critique of the cellular ligand-field model. Inorg Chim Ada 1995, 240, 581. <http://dx.doi.org/10.1016/0020-1693(95)04586-4>
  • Soudackov A. V., Tchougreeff A. L., Misurkin I. A.: Electronic structure and optical spectra of transition metal complexes by the effective Hamiltonian method. Theor Chim Acta 1992, 83, 389. <http://dx.doi.org/10.1007/BF01113064>
  • Zarić Snez̆ana, Niketić S.R: Ligand field analysis of metal-oxygen interactions—I. Tris(oxalato)cobaltate(III). J Polyhedron 1991, 10, 2665. <http://dx.doi.org/10.1016/S0277-5387(00)86165-3>
  • Zarić Snez̆ana, Niketić S.R: Ligand field analysis of metal-oxygen interactions—II. Tris(oxalato)chromate(III). J Polyhedron 1991, 10, 2673. <http://dx.doi.org/10.1016/S0277-5387(00)86166-5>
  • Jørgensen Christian K.: What Are One-Electron Energies and Electronegativity-Related Parameters?. Comments Inorg Chem 1991, 12, 139. <http://dx.doi.org/10.1080/02603599108050601>
  • Reisfeld R., Chernyak V., Eyal M., Jørgensen C.K.: Irreversible spectral changes of cobalt(II) by moderate heating in sol-gel glasses, and their ligand field rationalization. chem phys letts 1989, 164, 307. <http://dx.doi.org/10.1016/0009-2614(89)85034-1>
  • Andersen Peter: Hydroxo-bridged chromium(III) oligomers. Danish investigations during the last two decades. Coord Chem Rev - 1989, 94, 47. <http://dx.doi.org/10.1016/0010-8545(89)80044-X>
  • Bendix Jesper, Schäffer Claus E., Brorson Michael: Quantitative formulation of ligand field theory by the use of orthonormal operators. Exemplification by means of pq systems. Coord Chem Rev - 1989, 94, 181. <http://dx.doi.org/10.1016/0010-8545(89)80048-7>
  • Jørgensen C.K.: Ligand field of noble gases and closed-shell molecules coordinated to chromium(0) pentacarbonyl. chem phys letts 1988, 153, 185. <http://dx.doi.org/10.1016/0009-2614(88)85209-6>
  • JØrgensen C.K., Faucher M., Garcia D.: The “ligand field” energy differences between 4f orbitals are mainly provided by the kinetic energy operator. chem phys letts 1986, 128, 250. <http://dx.doi.org/10.1016/0009-2614(86)80334-7>
  • Burton A. D., Cox P. A.: A model for electronic structure of VO2. Philosophical Magazine Part B 1985, 51, 255. <http://dx.doi.org/10.1080/13642818508240568>
  • Radanović Dušan J.: Optical activity of cobalt(III), chromium(III) and rhodium(III) complexes with aminopolycarboxylate EDTA-type and related ligands. Coord Chem Rev - 1984, 54, 159. <http://dx.doi.org/10.1016/0010-8545(84)85020-1>
  • Vanquickenborne L.G., Ceulemans A.: Ligand-field models and the photochemistry of coordination compounds. Coord Chem Rev - 1983, 48, 157. <http://dx.doi.org/10.1016/0010-8545(83)80002-2>
  • Reinen D.: Cu2+, a Chameleon in Coordination Chemistry. Comments Inorg Chem 1983, 2, 227. <http://dx.doi.org/10.1080/02603598308078120>
  • J⊘rgensen Christian K.: J-Levels and S-Values in Monatomic Entities and Condensed Matter. Int Rev Phys Chem 1981, 1, 225. <http://dx.doi.org/10.1080/01442358109353321>
  • König E., Kremer S., Schnakig R., Kanellakopulos B.: Magnetism down to 1.00 k and the ligand field in a series of paramagnetic, five-coordinate cobalt(III) complexes, halogeno-N,N′(1,2-propylene)-bis(o-aminobenzylideneiminato)cobalt(III). Chemical Phys 1978, 34, 379. <http://dx.doi.org/10.1016/0301-0104(78)85180-5>
  • Rudolf Mikotaj F., Jeżowska-Trzebiatowska Bogusława: On the spin states of μ-oxo bridged oxomolybdenum(V) dimers. A conformational analysis by the angular overlap method. chem phys letts 1977, 51, 230. <http://dx.doi.org/10.1016/0009-2614(77)80390-4>
  • Burdett Jeremy K.: Relative ligand labilisation in transition metal photochemistry. A simple angular overlap approach. chem phys letts 1977, 47, 43. <http://dx.doi.org/10.1016/0009-2614(77)85302-5>
  • König E., Kremer S.: Energy diagrams based on complete ligand field calculations for arbitrary point groups in strong-field coupling. Comp Phys Com 1977, 13, 89. <http://dx.doi.org/10.1016/0010-4655(77)90034-0>
  • Urland W.: On the ligand-field potential for f electrons in the angular overlap model. Chemical Phys 1976, 14, 393. <http://dx.doi.org/10.1016/0301-0104(76)80136-X>
  • König E., Kremer S.: Complete Theory of Paramagnetism in Transition Metal Ions IV. The d2 and d8 Electron Configurations in Cubic (Oh and Td), Tetragonal (D4h), and Trigonal (D3d) Symmetry. Berichte der Bunsengesellschaft für physikalische Chemie 1975, 79, 192. <http://dx.doi.org/10.1002/bbpc.19750790213>
  • Jørgensen C. K.: Models and paradoxes in quantum chemistry. Theor Chim Acta 1974, 34, 189. <http://dx.doi.org/10.1007/BF00578416>
  • Saito Yoshihiko: Absolute configurations of metal complexes determined by x-ray analysis. Coord Chem Rev - 1974, 13, 305. <http://dx.doi.org/10.1016/S0010-8545(00)80258-1>
  • Klixbüll Jøgensen Christian, Jorgensenn C. K.: Der lose Zusammenhang zwischen Elektronenkonfiguration und chemischem Verhalten der schweren Elemente (Transurane). Angew Chem 1973, 85, 1. <http://dx.doi.org/10.1002/ange.19730850102>
  • Jørgensen Christian Klixbüll: The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics). Angew Chem Int Ed Engl 1973, 12, 12. <http://dx.doi.org/10.1002/anie.197300121>
  • König Edgar, Kremer Stefan: Symmetry coupling coefficients for point groups and the importance of Racah's Lemma for the standardization of phase. Theor Chim Acta 1973, 32, 27. <http://dx.doi.org/10.1007/BF01209413>